精英家教网 > 高中数学 > 题目详情
1.双曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{16}$=1的离心率是(  )
A.$\frac{3}{5}$B.$\frac{5}{3}$C.$\frac{\sqrt{41}}{5}$D.$\frac{5}{\sqrt{41}}$

分析 求得双曲线的a,b,c,运用e=$\frac{c}{a}$,计算即可得到所求值.

解答 解:双曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{16}$=1的a=5,b=4,c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{41}$,
可得e=$\frac{c}{a}$=$\frac{\sqrt{41}}{5}$.
故选:C.

点评 本题考查双曲线的方程和性质,主要是离心率的求法,求得双曲线的基本量是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的图象(部分)如图所示,则f(x)的解析式是f(x)=2sin(πx+$\frac{π}{6}$),x∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线m、l与平面α、β、γ满足β∩γ=l,l∥α,m?α,m⊥γ,则下列命题一定正确的是(  )
A.α⊥γ且l⊥mB.α⊥γ且m∥βC.m∥β且l⊥mD.α∥β且α⊥γ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=Asin(3x+\frac{π}{6})+B(A>0)$的最大值为2,最小值为0.
(1)求$f(\frac{7π}{18})$的值; 
(2)将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位后,再将图象上所有点的纵坐标扩大到原来$\sqrt{2}$的倍,横坐标不变,得到函数y=g(x)的图象,求方程$g(x)=\frac{{\sqrt{2}}}{2}$的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一个顶点的坐标为(0,-1),且右焦点F到直线x-y+1=0的距离为$\sqrt{2}$.
(1)求椭圆C的标准方程;
(2)是否存在斜率为2的直线l,使得当直线l与椭圆C有两个不同交点M,N时,能在直线$y=\frac{5}{3}$上找到一点P,在椭圆C上找到一点Q,满足$\overrightarrow{PM}=\overrightarrow{NQ}$?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.sin(-$\frac{10π}{3}$)的值是(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设x,y,z均为正实数,a=x+$\frac{1}{y}$,b=y+$\frac{1}{z}$,c=z+$\frac{1}{x}$,则a,b,c三个数(  )
A.至少有一个不小于2B.都小于2
C.至少有一个不大于2D.都大于2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某奖励基金发放方式为:每年一次,把奖金总额平均分成6份,奖励在某6个方面为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息存入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%,2000年该奖发放后基金总额约为21000万元.用an表示为第n(n∈N*)年该奖发放后的基金总额(2000年为第一年).
(1)用a1表示a2与a3,并根据所求结果归纳出an的表达式;
(2)试根据an的表达式判断2011年度该奖各项奖金是否超过150万元?并计算从2001年到2011年该奖金累计发放的总额.
(参考数据:1.062410=1.83,1.0329=1.32,1.031210=1.36,1.03211=1.40)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=cos2(x+$\frac{π}{12}$),g(x)=1+$\frac{1}{2}$sin2x.
(1)设x=x0是函数y=f(x)图象的一条对称轴,求g(x0)的值.
(2)求函数h(x)=f(x)+g(x)的单调递增区间.

查看答案和解析>>

同步练习册答案