精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)时,求函数的单调递增区间;

(2)设的内角的对应边分别为,且若向量与向量共线,求的值.

【答案】(1);(2).

【解析】

(1)利用三角函数的恒等变换化简f(x)的解析式为.令,k∈z,求得x的范围,结合,可得f(x)的递增区间.

(2)由f(C)=2,求得,结合C的范围求得C的值.根据向量=(1,sinA)与向量=(2,sinB)共线,可得 ,故有=,再由余弦定理得9=a2+b2﹣ab ②,由①②求得a、b的值.

(1)∵==

解得,即

,∴f(x)的递增区间为

(2)由,得

而C∈(0,π),∴,∴,可得

向量向量=(1,sinA)与向量=(2,sinB)共线,

由正弦定理得:=①.

由余弦定理得:c2=a2+b2﹣2abcosC,即9=a2+b2﹣ab ②,

①、②解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=sin2xcos2x2sinxcosxxR.

1)求fx)的单调递增区间;

2)求函数fx)在区间[]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)已知函数

)求函数的单调递增区间;

)证明:当时,

)确定实数的所有可能取值,使得存在,当时,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,过对角线的一个平面交于点,交.

①四边形一定是平行四边形;

②四边形有可能是正方形;

③四边形在底面内的投影一定是正方形;

④四边形有可能垂直于平面

以上结论正确的为_______________.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

讨论函数的单调性;

的两个零点是 ,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由四个不同的数字1,2,4,组成无重复数字的三位数.(最后的结果用数字表达)

(Ⅰ)若,其中能被5整除的共有多少个?

(Ⅱ)若,其中能被3整除的共有多少个?

(Ⅲ)若,其中的偶数共有多少个?

(Ⅳ)若所有这些三位数的各位数字之和是252,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京联合张家口获得2022年第24届冬奥会举办权,我国各地掀起了发展冰雪运动的热潮,现对某高中的学生对于冰雪运动是否感兴趣进行调查,该高中男生人数是女生的1.2倍,按照分层抽样的方法,从中抽取110人,调查高中生是否对冰雪运动感兴趣得到如下列联表:

感兴趣

不感兴趣

合计

男生

40

女生

30

合计

110

1)补充完成上述列联表;

2)是否有99%的把握认为是否喜爱冰雪运动与性别有关.

附: (其中.

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若的图像在处的切线与直线垂直,求实数的值及切线方程;

(Ⅱ)若过点存在3条直线与曲线相切,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P-ABCD的底面是边长为2的正方形,PA⊥平面ABCDEF分别为线段ABBC的中点.

1)线段AP上一点M,满足,求证:EM∥平面PDF

2)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

同步练习册答案