【题目】如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD为正方形,侧棱AA1⊥底面ABCD,E为棱AA1的中点,AB=2,AA1=3.
(Ⅰ)求证:A1C∥平面BDE;
(Ⅱ)求证:BD⊥A1C;
(Ⅲ)求三棱锥A-BDE的体积.
【答案】(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)1
【解析】
(Ⅰ)证明:设AC∩BD=O,连接OE,先证明OE∥A1C,再证明A1C∥平面BDE;(Ⅱ)先证明BD⊥平面ACC1A1,再证明BD⊥A1C;(Ⅲ)由利用体积变换求三棱锥A-BDE的体积.
(Ⅰ)证明:设AC∩BD=O,连接OE,
在△ACA1中,∵O,E分别为AC,AA1的中点,∴OE∥A1C,
∵A1C平面BDE,OE平面BDE,
∴A1C∥平面BDE;
(Ⅱ)证明:∵侧棱AA1⊥底面ABCD,BD底面ABCD,∴AA1⊥BD,
∵底面ABCD为正方形,∴AC⊥BD,
∵AA1∩AC=A,∴BD⊥平面ACC1A1,
∵A1C平面ACC1A1,∴BD⊥A1C;
(Ⅲ)解:∵侧棱AA1⊥底面ABCD于A,E为棱DD1的中点,且AA1=3,
∴AE=,即三棱锥E-ABD的高为.
由底面正方形的边长为2,得.
∴.
科目:高中数学 来源: 题型:
【题目】如图所示,在多面体中,四边形为平行四边形,平面平面,,,,,,,点是棱上的动点.
(Ⅰ)当时,求证平面;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)若二面角所成角的余弦值为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱中,,点分别为棱的中点.
(Ⅰ)求证:∥平面
(Ⅱ)求证:平面平面;
(Ⅲ)在线段上是否存在一点,使得直线与平面所成的角为300?如果存在,求出线段的长;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平行四边形中,,.现沿对角线将折起,使点到达点.点、分别在、上,且、、、四点共面.
(1)求证:;
(2)若平面平面,平面与平面夹角为,求与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为 为参数),过点且倾斜角为的直线与曲线交于两点.
(1)求的取值范围;
(2)求中点的轨迹的参数方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为.
(1)求直线的直角坐标方程与曲线的普通方程;
(2)若是曲线上的动点,为线段的中点,求点到直线的距离的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com