精英家教网 > 高中数学 > 题目详情
3.在△ABC中,G为重心,O为任意一点,$\overrightarrow{OP}$=$\frac{1}{3}$[(1-λ)$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$+(1+2λ)$\overrightarrow{OC}$],求点P在怎样的直线上?

分析 取AB的中点D,得出$\overrightarrow{OA}$+$\overrightarrow{OB}$=2$\overrightarrow{OD}$,化简$\overrightarrow{OP}$,根据平面向量的共线定理,得出P在边AB的中线所在的直线上.

解答 解:取AB的中点D,则$\overrightarrow{OA}$+$\overrightarrow{OB}$=2$\overrightarrow{OD}$;
∵$\overrightarrow{OP}$=$\frac{1}{3}$[(1-λ)$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$+(1+2λ)$\overrightarrow{OC}$]
=$\frac{1}{3}$(1-λ)($\overrightarrow{OA}$+$\overrightarrow{OB}$)+$\frac{1}{3}$(1+2λ)$\overrightarrow{OC}$
=$\frac{2}{3}$(1-λ)$\overrightarrow{OD}$+$\frac{1}{3}$(1+2λ)$\overrightarrow{OC}$,
且$\frac{2}{3}$(1-λ)+$\frac{1}{3}$(1+2λ)=1,
∴P、C、D三点共线;
∴点P在边AB上的中线所在的直线上.

点评 本题考查了平面向量的加法运算以及三点共线的应用问题,也考查了数形结合与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{lgx}{\sqrt{3-x}}$的定义域为A,集合B={x|x2-(a+1)x+a≤0},
(1)若a=2,求A∪B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数y=$\frac{x+3a-1}{x+1}$在区间(-1,+∞)上单调递增,则a的取值范围是a<$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知sinα=-$\frac{3\sqrt{10}}{10}$,且α是第三象限角,求tan(α-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知非零向量$\overrightarrow{a},\overrightarrow{b}$不共线.若$\overrightarrow{AB}=\overrightarrow{a}+\overrightarrow{b}$,$\overrightarrow{AC}=2\overrightarrow{a}+8\overrightarrow{b}$,$\overrightarrow{AD}=3\overrightarrow{a}-3\overrightarrow{b}$,求证:A,B,C,D四点共面.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在长方体ABCD-A1B1C1D1中,化简:$\overrightarrow{DA}-\overrightarrow{DB}+\overrightarrow{{B}_{1}C}-\overrightarrow{{B}_{1}B}+\overrightarrow{{A}_{1}{B}_{1}}$-$\overrightarrow{{A}_{1}B}$=$\overrightarrow{B{D}_{1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=$\left\{\begin{array}{l}{1(n=0)}\\{f[g(n-1)](n≥1)}\end{array}\right.$.
(1)若an=g(n)-g(n-1)(n∈N*),求证:{an}为等比数列;
(2)设Sn=a1+a2+a3+…+an,求Sn(用n,b表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设曲线x2-y2=0与抛物线y2=-4x的准线围成的三角形区域(包含边界)为D,P(x,y)为D内的一个动点,则目标函数z=x-2y+5的最大值为(  )
A.4B.5C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知全集U=N,集合P={1,2,3,4,5},Q={2,3,6,7,8},则P∩(∁UQ)={1,4,5}.

查看答案和解析>>

同步练习册答案