精英家教网 > 高中数学 > 题目详情
(2013•三门峡模拟)已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的长轴长为4,离心率为
1
2
,F1、F2分别为其左右焦点.一动圆过点F2,且与直线x=-1相切.
(Ⅰ)(ⅰ)求椭圆C1的方程; (ⅱ)求动圆圆心C轨迹的方程;
(Ⅱ)在曲线上C有两点M、N,椭圆C1上有两点P、Q,满足MF2
NF2
共线,
PF2
QF2
共线,且
PF2
MF2
=0,求四边形PMQN面积的最小值.
分析:(Ⅰ)(ⅰ)由题设知:
2a=4
e=
c
a
=
1
2
,由此能求出椭圆方程.
(ⅱ)由已知可得动圆圆心轨迹为抛物线,且抛物线C的焦点为(1,0),准线方程为x=1,由此能求出动圆圆心轨迹方程.
(Ⅱ)当直线斜率不存在时,|MN|=4,此时PQ的长即为椭圆长轴长,|PQ|=4,从而四边形PMQN面积为8;设直线MN的斜率为k,直线MN的方程为:y=k(x-1),直线PQ的方程为y=
1
k
(x-1)
,设M(x1,y1),N(x2,y2),P(x3,y3),Q(x4,y4),由
y=k(x-1)
y2=4x
,得k2x2-(2k2+4)x+k2=0,由抛物线定义可知:|MN|=4+
4
k2
,由此求出SPMQN=
24
3-
2
t
-
1
t2
>8,所以四边形PMQN面积的最小值为8.
解答:解:(Ⅰ)(ⅰ)由题设知:
2a=4
e=
c
a
=
1
2

∴a=2,c=1,b=
4-1
=
3

∴所求的椭圆方程为
x2
4
+
y2
3
=1

(ⅱ)由已知可得动圆圆心轨迹为抛物线,
且抛物线C的焦点为(1,0),
准线方程为x=1,则动圆圆心轨迹方程为C:y2=4x.
(Ⅱ)当直线斜率不存在时,|MN|=4,
此时PQ的长即为椭圆长轴长,|PQ|=4,
从而SPMQN=
1
2
|MN|•|PQ|=
1
2
×4×4
=8,
设直线MN的斜率为k,直线MN的方程为:y=k(x-1),
直线PQ的方程为y=-
1
k
(x-1)

设M(x1,y1),N(x2,y2),P(x3,y3),Q(x4,y4),
y=k(x-1)
y2=4x
,消去y可得k2x2-(2k2+4)x+k2=0,
由抛物线定义可知:
|MN|=|MF2|+|NF2|=x1+1+x2+1
=
2k2+4
k2
+2
=4+
4
k2

y=
1
k
(x-1)
x2
4
+
y2
3
=1
,消去y得(3k2+4)x2-8x+4-12k2=0,
从而|PQ|=
1+(-
1
k
)
2
|x3-x4|
=
12(1+k2)
3k2+4

∴SPMQN=
1
2
|MN|•|PQ|
=
1
2
|MN|•|PQ|

=
1
2
(4+
4
k2
)•
12(1+k2)
3k2+4

=24
(1+k2)2
3k4+4k2

令1+k2=t,∵k2>0,则t>1,
则SPMQN=
24t2
3(t-1)2+4(t-1)

=
24t2
3t2-2t-1

=
24
3-
2
t
-
1
t2

因为3-
2
t
-
1
t2
=4-(1+
1
t
2∈(0,3),
所以SPMQN=
24
3-
2
t
-
1
t2
>8,
所以四边形PMQN面积的最小值为8.
点评:本题考查椭圆方程和轨迹方程的求法,考查四边形面积的最小值的求法.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•三门峡模拟)给出下列四个命题:
①函数y=sin(2x-
π
6
)
的图象沿x轴向右平移
π
6
个单位长度所得图象的函数表达式是y=cos2x.
②函数y=lg(ax2-2ax+1)的定义域是R,则实数a的取值范围为(0,1).
③单位向量
a
b
的夹角为60°,则向量2
a
-
b
的模为
3

④用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1)(n∈N*)时,从k到k+1的证明,左边需增添的因式是2(2k+1).
其中正确的命题序号是
③④
③④
(写出所有正确命题的序号).

查看答案和解析>>

同步练习册答案