精英家教网 > 高中数学 > 题目详情

【题目】一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是(
A.57.2,3.6
B.57.2,56.4
C.62.8,63.6
D.62.8,3.6

【答案】D
【解析】解:设这组数据分别为x1 , x2 , xn , 则 = (x1+x2+…+xn), 方差为s2= [(x12+…+(xn2],
每一组数据都加60后,
′= (x1+x2+…+xn+60n)= +60
=2.8+60=62.8,
方差s′2= +…+(xn+60﹣62.8)2]
=s2=3.6.
故选D
首先写出原来数据的平均数表示式和方差的表示式,把数据都加上60以后,再表示出新数据的平均数和方差的表示式,两部分进行比较,得到结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

设函数f(x)=alnx﹣bx2(x>0).

(1)若函数f(x)在x=1处于直线相切,求函数f(x)在上的最大值;

(2)当b=0时,若不等式f(x)≥m+x对所有的a∈[1,],x∈[1,e2]都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的角A、B、C所对的边分别是a、b、c,设向量
(1)若 ,求证:△ABC为等腰三角形;
(2)若 ,边长c=2,角C= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.()

(Ⅰ)讨论的单调性;

(Ⅱ)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每年每次租时间不超过两小时免费,超过两个小时的部分每小时收费2元(不足1小时的部分按1小时计算).现有甲、乙两人独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为 ;两小时以上且不超过三小时还车的概率为 ;两人租车时间都不会超过四小时.

(1)求甲、乙都在三到四小时内还车的概率和甲、乙两人所付租车费相同的概率;

(2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosx,cosx), =(sinx,﹣cosx),记函数f(x)=2 +1,其中x∈R.
(Ⅰ)求函数f(x)的最小正周期及函数f(x)的图象的对称中心的坐标;
(Ⅱ)若α∈(0, ),且f( )= ,求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高一 、高二 、高三三个年级共有 名教师,为调查他们的备课时间情况,通过分层

抽样获得了名教师一周的备课时间 ,数据如下表(单位 :小时):

高一年级

高二年级

高三年级

(1)试估计该校高三年级的教师人数 ;

(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲 ,高二年级选出的人记为乙 ,求该周甲的备课时间不比乙的备课时间长的概率 ;

(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是(单位: 小时),这三个数据与表格中的数据构成的新样本的平均数记为,表格中的数据平均数记为 ,试判断的大小. (结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的两个顶点分别为,两个焦点分别为),过点的直线与椭圆相交于另一点,且.

(Ⅰ)求椭圆的离心率;

(Ⅱ)设直线上有一点)在的外接圆上,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(x+1)= ,且f(x)在[﹣3,﹣2]上是减函数,若α,β是锐角三角形的两个内角,则(
A.f(sinα)>f(sinβ)
B.f(cosα)>f(cosβ)
C.f(sinα)>f(cosβ)
D.f(sinα)<f(cosβ)

查看答案和解析>>

同步练习册答案