精英家教网 > 高中数学 > 题目详情
11.已知函数y=f(x)的定义域为R,对任意a,b∈R都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立.
(1)证明函数y=f(x)在R上的单调性;
(2)讨论函数y=f(x)的奇偶性;
(3)若f(2+x)+f(x)<0,求x的取值范围.

分析 (1)设x1>x2,则x1-x2>0,利用f(a+b)=f(a)+f(b)可求得f(x1)-f(x2)=f(x1-x2),又当x>0时,f(x)<0,从而得f(x1)<f(x2),可证明函数y=f(x)在R上单调递减;
(2)由f(a+b)=f(a)+f(b)⇒f(x-x)=f(x)+f(-x)=0,从而可知函数y=f(x)的奇偶性;
(3)由f(2+x)+f(x)<0得f(2+x)<-f(x)=f(-x),利用y=f(x)在R上单调递减即可求得x的取值范围.

解答 (1)证明:设x1>x2,则x1-x2>0,而f(a+b)=f(a)+f(b)
∴f(x1)-f(x2)=f((x1-x2)+x2)-f(x2
=f(x1-x2)+f(x2)-f(x2
=f(x1-x2),
又当x>0时,f(x)<0恒成立,
∴f(x1)<f(x2),
∴函数y=f(x)是R上的减函数;
(2)证明:由f(a+b)=f(a)+f(b),
得f(x-x)=f(x)+f(-x),
即f(x)+f(-x)=f(0),而f(0)=0,
∴f(-x)=-f(x),
即函数y=f(x)是奇函数.
(3)解:由f(2+x)+f(x)<0,
得f(2+x)<-f(x),
又y=f(x)是奇函数,
即f(2+x)<f(-x),
又y=f(x)在R上是减函数,
∴2+x>-x解得x>-1.

点评 本题考查抽象函数及其应用,着重考查函数单调性的判断与证明,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知f(x)=$\frac{3-{x}^{2}}{1+{x}^{2}}$.
(1)计算f(3),f(4),f($\frac{1}{3}$)及f($\frac{1}{4}$)的值;
(2)由(1)的结果猜想一个普遍的结论,并加以证明;
(3)求值:f(1)+f(2)+…+f(2015)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2015}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=log3$\frac{2{x}^{2}+bx+c}{{x}^{2}+1}$的值域为[0,1],则b与c的和为0或4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若函数f(x)=$\frac{p{x}^{2}+3}{3x-q}$是奇函数,且f(2)=$\frac{5}{2}$,求实数p,q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.化简:
(1)$\root{3}{{a}^{\frac{7}{2}}\sqrt{{a}^{-3}}}$÷$\sqrt{\root{3}{{a}^{-8}}\root{3}{{a}^{15}}}$÷$\root{3}{\sqrt{{a}^{-3}}\sqrt{{a}^{-1}}}$;
(2)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4{b}^{\frac{2}{3}}+2\root{3}{ab}+{a}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{b}{a}}$)×$\root{3}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\frac{1}{2}$x+m-lnx的定义域为[1,3],值域为M,若对于任意的a,b,c∈M,a,b,c都分别是一个三角形的三边的长度,则m的取值范围是(ln2-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设二次函数f(x)=ax2+bx+c满足f(x+1)-f(x)=2x-1,且f(0)=-1,求a、b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知cosα=$\frac{1}{3}$,且-$\frac{π}{2}$<α<0,求$\frac{cos(-α-π)•sin(2π+α)}{sin(-α-π)cos(-α)tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=2${\;}^{-{x}^{2}+4x-3}$的递增区间为(-∞,2].

查看答案和解析>>

同步练习册答案