精英家教网 > 高中数学 > 题目详情
已知向量
a
=(sin(π-x),1),
b
=(
3
,1),函数f(x)=
a
b

(1)写出函数f(x)的单调递减区间;
(2)已知f(θ+
π
6
)+f(θ-
π
6
)=3,求sinθ的值.
考点:平面向量数量积的运算,两角和与差的正弦函数
专题:三角函数的求值,三角函数的图像与性质,平面向量及应用
分析:(1)根据向量的数量积运算,以及诱导公式化简即可,再根据正弦函数求出单调区间
(2)根据正弦的和差公式,计算即可.
解答: 解:(1)向量
a
=(sin(π-x),1),
b
=(
3
,1),
∴f(x)=
a
b
=
3
sinx+1,
∴f(x)单调递减区间(2kπ+
π
2
,2kπ+
2
),k∈z,
(2)∵f(θ+
π
6
)+f(θ-
π
6
)=3,
3
sin(θ+
π
6
)+1+
3
sin(θ-
π
6
)+1=3,
∴2
3
sinθcos
π
6
=1.
∴sinθ=
1
3
点评:本题主要考查了向量的数量积的运算和三角函数的和差公式以及诱导公式,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)满足f(sinα+cosα)=sinαcosα,则f(0)=(  )
A、-
1
2
B、0
C、
1
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:在梯形ABCD中,AD∥BC且AD=
1
2
BC
,AC与BD相交于O,设
AB
=
a
AD
=
b
,用
a
b
表示
BO
,则
BO
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

Q是椭圆
x2
a2
+
y2
b2
=1(a>b>0)上一点,F1、F2为左、右焦点,过F1作∠F1QF2外角平分线的垂线交F2Q的延长线于P点,当Q点在椭圆上运动时,P点的轨迹是(  )
A、直线B、圆C、椭圆D、双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,sinθ),
b
=(cosθ,-
3
),θ∈[0,2π).
(Ⅰ)若
a
b
,求tanθ的值;
(Ⅱ)若2|
a
|=|
b
|,求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(cos
ωx
2
,sinωx-
3
3
) 
n
=(2cos
ωx
2
3
)
,且x∈R,ω>0,若函数f(x)=
m
n
在一个周期内的图象的最高点A、最低点B和一个零点C构成一个直角三角形的三个顶点.(如图所示)
(1)求ω的值及函数f(x)的值域;
(2)若0<ω<1,当f(x0)=-
4
2
3
x0∈[-
14
3
,-
8
3
]
,求f(x0+1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(
1
2
,0)和圆Q:4x2+4x+4y2-31=0,圆E过点P且与圆Q内切,求圆心E的轨迹G的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面区域D1={(x,y)|
x≥-2
y≤2
x-y≤0
},D2={(x,y)|kx-y+2<0,k>0},在区域D1内随机选取一点M,且点M恰好在区域D2上的概率为p,若0<p≤
1
4
,则k的取值范围为(  )
A、k≥2
B、0<k≤1
C、k≥1
D、0<k≤
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(x+
1
x
6的展开式中的常数项为
 

查看答案和解析>>

同步练习册答案