精英家教网 > 高中数学 > 题目详情

【题目】

(1)求的单调区间;

(2)讨论零点的个数;

(3)当时,设恒成立,求实数的取值范围.

【答案】(1) 的单调递增区间为,单调递减区间为。(2)见解析;(3)

【解析】

(1)直接对原函数求导,令导数大于0,解得增区间,令导数小于0,解得减区间;

(2)先判断是f(x)的一个零点,当时,由f(x)=0得,,对函数求导得的大致图像,分析y=a与交点的个数可得到函数fx)的零点个数.

(3)不等式恒成立转化为函数的最值问题,通过变形构造出函数h(x)=f(x)-ag(x),通过研究该函数的单调性与极值,进而转化为该函数的最小值大于等于0恒成立,求得a即可.

(1)

时,递增,当时,,g(x)递减,

的单调递增区间为,单调递减区间为.

(2)是f(x)的一个零点,当时,由f(x)=0得,

时,递减且

时,,且时,递减,

时,递增,故,,

大致图像如图,

∴当时,f(x)有1个零点;

当a=e或时,f(x)有2个零点;;

时, 有3个零点.

(3)h(x)=f(x)-ag(x)=x

,

的根为,即有

,可得时,递减,

时,递增,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,其中为自然对数的底数.

1)若在定义域上是增函数,求的取值范围;

2)若直线是函数的切线,求实数的值;

3)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】纹样是中国传统文化的重要组成部分,它既代表着中华民族的悠久历史、社会的发展进步,也是世界文化艺术宝库中的巨大财富.小楠从小就对纹样艺术有浓厚的兴趣.收集了如下9枚纹样微章,其中4枚凤纹徽章,5枚龙纹微章.小楠从9枚徽章中任取3枚,则其中至少有一枚凤纹徽章的概率为( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A.将一组数据中的每个数据都乘以同一个非零常数a后,方差也变为原来的a

B.设有一个回归方程,变量x增加1个单位时,y平均减少5个单位

C.线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱

D.在某项测量中,测量结果ξ服从正态分布N1σ2)(σ0),则Pξ1)=0.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,过椭圆的焦点且与长轴垂直的弦长为1

1)求椭圆C的方程;

2)设点M为椭圆上第一象限内一动点,AB分别为椭圆的左顶点和下顶点,直线MBx轴交于点C,直线MAy轴交于点D,求证:四边形ABCD的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:

微信控

非微信控

合计

男性

26

24

50

女性

30

20

50

合计

56

44

100

(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?

(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;

(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.

参考公式: ,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数.

(1)求的单调区间;

(2)证明:存在,使得方程上有唯一解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四边形ABCD外切于,△ACB的内切圆与边AB、BC的切点分别为P、Q,,△ACD的内切圆与边CD、DA的切点分别为R、S. 求证:三条直线PQ、RS、AC共点或平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为m为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线的极坐标方程为

1)求曲线C和直线的直角坐标系方程;

2)已知直线与曲线C相交于AB两点,求的值.

查看答案和解析>>

同步练习册答案