精英家教网 > 高中数学 > 题目详情

函数f(x)的定义域为{x|x∈R,且x≠1},已知f(x+1)为奇函数,当x<1时,f(x)=2x2-x+1,则当x>1时,f(x)的递减区间是 ________

[,+∞)
分析:由f(x+1)为奇函数,利用换元法得f(x)=-f(2-x),再设x>1,则2-x<1,代入解析式求出f(2-x),由关系式求出
f(x),根据二次函数的单调性求出它的减区间.
解答:由题意知,f(x+1)为奇函数,则f(-x+1)=-f(x+1),
令t=-x+1,则x=1-t,故f(t)=-f(2-t),即f(x)=-f(2-x),
设x>1,则2-x<1,
∵当x<1时,f(x)=2x2-x+1,∴f(2-x)=2(2-x)2-(2-x)+1=2x2-7x+7,
∴f(x)=-f(2-x)=-2x2+7x-7,∴函数的对称轴x=
故所求的减区间是
故答案为:
点评:本题主要考查对单调性和奇偶性的理解,判断函数奇偶性和求函数单调区间的基本方法以及函数解析式的求解方法的掌握,关键利用奇函数的定义推出的关系式;并且函数的单调性、奇偶性是高考函数题的重点考查内容.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)的定义域为{x|x≠0},且满足对于定义域内任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
(Ⅰ)求f(1)的值;
(Ⅱ)判断f(x)的奇偶性并证明;
(Ⅲ)若f(2)=1,且f(x)在(0,+∞)上是增函数,解关于x的不等式f(2x-1)-3≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域是[0,1),则F(x)=f[log 
12
(3-x)
]的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)试讨论函数F(x)在定义域D上的单调性;
(3)若关于x的方程F(x)-2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为(-1,1),它在定义域内既是奇函数又是增函数,且f(a-3)+f(4-2a)<0,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为[-1,2],则函数
f(x+2)
x
的定义域为(  )
A、[-1,0)∪(0,2]
B、[-3,0)
C、[1,4]
D、(0,2]

查看答案和解析>>

同步练习册答案