【题目】选修4-4:坐标系与参数方程
已知圆和直线.
(Ⅰ)求的参数方程以及圆上距离直线最远的点坐标;
(Ⅱ)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,将圆上除点以外所有点绕着逆时针旋转得到曲线,求曲线的极坐标方程.
科目:高中数学 来源: 题型:
【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,求在不超过600个工时的条件下,生产产品A和产品B的利润之和的最大值(元).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知⊙和点.过作⊙的两条切线,切点分别为且直线的方程为.
(1)求⊙的方程;
(2)设为⊙上任一点,过点向⊙引切线,切点为, 试探究:平面内是否存在一定点,使得为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆的圆心在轴上,半径为1,直线被圆所截的弦长为,且圆心在直线的下方.
(1)求圆的方程;
(2)设,若圆是的内切圆,求的面积的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】路灯距地面8 m,一个身高为1.6 m的人以84 m/min的速度在地面上从路灯在地面上射影点C沿某直线离开路灯.
(1)求身影的长度y与人距路灯的距离x之间的关系式;
(2)求人离开路灯的第一个10 s内身影的平均变化率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】运行如图的程序,如果输入的m,n的值分别是24和15,记录输出的i和m的值.在平面直角坐标系xOy中,已知点A(i﹣4,m),圆C的圆心在直线l:y=2x﹣4上.
(1)若圆C的半径为1,且圆心C在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使∠OMA=90°,求圆C的半径r的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(cos x,sin x), =(cos x,﹣sin x),且x∈[0, ].求:
(1)及 ;
(2)若f(x)= ﹣2λ 的最小值是﹣ ,求λ的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com