精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知圆和直线.

(Ⅰ)求的参数方程以及圆上距离直线最远的点坐标;

(Ⅱ)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,将圆上除点以外所有点绕着逆时针旋转得到曲线,求曲线的极坐标方程.

【答案】(1)(2)

【解析】试题分析:(Ⅰ)根据可得圆的参数方程,由直线的位置可得当时,圆上的点距离直线最远,即可得点坐标;(Ⅱ)得的极坐标方程为,该变换为,由相关点法可得结果.

试题解析:(Ⅰ) 的参数方程为为参数,

易得直线与圆均过坐标原点,且直线的倾斜角为

所以当时,圆上的点距离直线最远,

所以点的坐标为.

(Ⅱ)由 可得的极坐标方程为

上除极点外的某一点的极坐标为,旋转后成为

由相关点法,回代入

可得的极坐标方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg乙材料0.3kg,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg乙材料90kg,求在不超过600个工时的条件下,生产产品A和产品B的利润之和的最大值(元).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和,且2的等差中项.

1)求数列的通项公式;

2)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙和点.作⊙的两条切线,切点分别为且直线的方程为

(1)求⊙的方程

(2)设为⊙上任一点,过点向⊙引切线,切点为试探究:平面内是否存在一定点,使得为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心轴上,半径为1,直线被圆所截的弦长为,且圆心在直线的下方.

(1)求圆的方程;

(2)设,若圆的内切圆,求的面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】路灯距地面8 m,一个身高为1.6 m的人以84 m/min的速度在地面上从路灯在地面上射影点C沿某直线离开路灯.

(1)求身影的长度y与人距路灯的距离x之间的关系式;

(2)求人离开路灯的第一个10 s内身影的平均变化率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运行如图的程序,如果输入的m,n的值分别是24和15,记录输出的i和m的值.在平面直角坐标系xOy中,已知点A(i﹣4,m),圆C的圆心在直线l:y=2x﹣4上.

(1)若圆C的半径为1,且圆心C在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使∠OMA=90°,求圆C的半径r的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cos x,sin x), =(cos x,﹣sin x),且x∈[0, ].求:
(1)
(2)若f(x)= ﹣2λ 的最小值是﹣ ,求λ的值.

查看答案和解析>>

同步练习册答案