(2013•湖北)已知等比数列{an}满足:|a2﹣a3|=10,a1a2a3=125.
(1)求数列{an}的通项公式;
(2)是否存在正整数m,使得?若存在,求m的最小值;若不存在,说明理由.
科目:高中数学 来源: 题型:解答题
已知等比数列{an}的前n项和Sn满足:S4-S1=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{an}为递增数列,,,问是否存在最小正整数n使得成立?若存在,试确定n的值,不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列{}中, ,,
(1)求证数列{}为等比数列.
(2)判断265是否是数列{}中的项,若是,指出是第几项,并求出该项以前所有项的和(不含265),若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列的前n项和为满足:.
(1)求证:数列是等比数列;
(2)令,对任意,是否存在正整数m,使都成立?若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设数列,,,已知,,,,,().
(1)求数列的通项公式;
(2)求证:对任意,为定值;
(3)设为数列的前项和,若对任意,都有,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列,满足,,,.
(1)求证:数列是等差数列,并求数列的通项公式;
(2)设数列满足,对于任意给定的正整数,是否存在正整数,(),使得,,成等差数列?若存在,试用表示,;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列{an}的前n项和为Sn,且Sn=2an-1;数列{bn}满足bn-1-bn=bnbn-1(n≥2,n∈N*),b1=1.
(1)求数列{an},{bn}的通项公式;
(2)求数列的前n项和Tn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com