精英家教网 > 高中数学 > 题目详情
设向量a=(
1
2
,sinα)的模为
2
2
,则cos2α=
1
2
分析:由向量的模为
2
2
,可求出sinα的平方,代入cos2α=1-2sin2α 可求出cos2α 的值.
解答:解:∵向量
a
=(
1
2
,sinα)的模为
2
2

1
4
+sin2α=
1
2
,sin2α=
1
4

∴cos2α=1-2sin2α=
1
2

故答案为
1
2
点评:本题考查复数的模的概念及公式,二倍角的余弦公式的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,F为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点,P为椭圆上一点,O为原点,记△OFP的面积为S,且
OF
FP
=1

(1)设
1
2
<S<
3
2
,求向量
OF
FP
夹角的取值范围.
(2)设|
OF
|=c
S=
3
4
c
,当c≥2时,求当|
OP
|
取最小值时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC中的三个内角分别为A、B、C.
(1)设
BC
CA
=
CA
AB
,∠A=
12
,求△ABC中∠B的大小;
(2)设向量
s
=(2sinC,  -
3
)
t
=(cos2C,  2cos2
C
2
-1)
,且
s
t
,若sinA=
2
3
,求sin(
π
3
-B)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•成都三模)已知O为坐标原点,点E、F的坐标分别为(-
2
,0)、(
2
,0),点A、N满足
AE
=2
3
ON
=
1
2
(
OA
+
OF
)
,过点N且垂直于AF的直线交线段AE于点M,设点M的轨迹为C.
(1)求轨迹C的方程;
(2)若轨迹C上存在两点P和Q关于直线l:y=k(x+1)(k≠0)对称,求k的取值范围;
(3)在(2)的条件下,设直线l与轨迹C交于不同的两点R、S,对点B(1,0)和向量a=(-
3
,3k),求
BR
BS
-|a|2
取最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知锐角△ABC中的三个内角分别为A、B、C.
(1)设
BC
CA
=
CA
AB
,∠A=
12
,求△ABC中∠B的大小;
(2)设向量
s
=(2sinC,  -
3
)
t
=(cos2C,  2cos2
C
2
-1)
,且
s
t
,若sinA=
2
3
,求sin(
π
3
-B)
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点,P为椭圆上一点,O为原点,记△OFP的面积为S,且
OF
FP
=1

(1)设
1
2
<S<
3
2
,求向量
OF
FP
夹角的取值范围.
(2)设|
OF
|=c
S=
3
4
c
,当c≥2时,求当|
OP
|
取最小值时的椭圆方程.
精英家教网

查看答案和解析>>

同步练习册答案