精英家教网 > 高中数学 > 题目详情
已知n 次多项式f(x)=anxn+an-1xn-1+…+a1x+a0,用秦九韶算法求当x=x0时f(x0)的值,需要进行的乘法运算、加法运算的次数依次是(  )
分析:求多项式的值时,首先计算最内层括号内一次多项式的值,即 v1=anx+an-1然后由内向外逐层计算一次多项式的值,即 v2=v1x+an-2,v3=v2x+an-3…vn=vn-1x+a1 这样,求n次多项式f(x)的值就转化为求n个一次多项式的值.
解答:解:f(x)=anxn+an-1xn-1+…+a1x+a0=(anxn-1+an-1xn-2+…+a1)x+a0
=((anxn-2+an-1xn-3+…+a2)x+a1)x+a0
=…
=(…((anx+an-1)x+an-2)x+…+a1)x+a0
求多项式的值时,首先计算最内层括号内一次多项式的值,
即 v1=anx+an-1
然后由内向外逐层计算一次多项式的值,即 
v2=v1x+an-2
v3=v2x+an-3

vn=vn-1x+a1 
这样,求n次多项式f(x)的值就转化为求n个一次多项式的值.
∴对于一个n次多项式,至多做n次乘法和n次加法
故选A.
点评:秦九韶算法对于一个n次多项式,至多做n次乘法和n次加法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=f(x)在x=
t+2
2
处取得最小值-
t2
4
(t>0),f(1)=0
(1)求y=f(x)的表达式;
(2)若任意实数x都满足f(x)•g(x)+anx+bn=xn+1(g(x)为多项式,n∈N+),试用t表示an和bn
(3)设圆Cn的方程(x-an2+(y-bn2=rn2,圆Cn与Cn+1外切(n=1,2,3,…),{rn}是各项都是正数的等比数列,记Sn为前n个圆的面积之和,求rn,Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)在x=处取得最小值-(t>0),f(1)=0.

(1)求y=f(x)的表达式;?

(2)若任意实数x都满足等式f(x)·g(x)+anx+bn=xn+1,(g(x)为多项式,n∈N),试用t表示anbn;?

(3)设圆Cn的方程是(x-an)2+(y-bn)2=rn2,圆Cn与Cn+1外切(n=1,2,3,…),{rn}是各项都是正数的等比数列,记Sn为前n个圆的面积之和,求rn,Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)在x=处取得最小值- (t>0),f(1)=0.

(1)求y=f(x)的表达式;

(2)若任意实数x都满足等式f(xg(x)+anx+bn=xn+1g(x)]为多项式,n∈N*),试用t表示anbn

(3)设圆Cn的方程为(xan)2+(ybn)2=rn2,圆CnCn+1外切(n=1,2,3,…);{rn}是各项都是正数的等比数列,记Sn为前n个圆的面积之和,求rnSn.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)在x=处取得最小值- (t>0),  f(1)=0.

y=f(x)的表达式;

若任意实数x都满足等式f(xg(x)+anx+bn=xn+1g(x)]为多项式,n∈N*),试用t表示anbn

设圆Cn的方程为(xan)2+(ybn)2=rn2,圆CnCn+1外切(n=1,2,3,…);{rn}是各项都是正数的等比数列,记Sn为前n个圆的面积之和,求rnSn.

查看答案和解析>>

同步练习册答案