精英家教网 > 高中数学 > 题目详情

已知数列{an}的首项a1=5,前n项和为Sn
且Sn+1=2Sn+n+5(n∈N*).
(Ⅰ)证明数列{an+1}是等比数列;
(Ⅱ)令f(x)=a1x+a2x2+…+anxn,求函数f(x)在点x=1处的导数f'(1).

解:(Ⅰ)由已知Sn+1=2Sn+n+5,∴n≥2时,Sn=2Sn-1+n+4,
两式相减,得Sn+1-Sn=2(Sn-Sn-1)+1,
即an+1=2an+1,从而an+1+1=2(an+1).
当n=1时,S2=2S1+1+5,∴a1+a2=2a1+6又a1=5,∴a2=11,
从而a2+1=2(a1+1).故总有an+1+1=2(an+1),n∈N*.
又∵a1=5,,∴an+1≠0,从而
即{an+1}是以a1+1=6为首项,2为公比的等比数列.
(Ⅱ)由(Ⅰ)知an=3×2n-1.
∵f(x)=a1x+a2x2+…+anxn∴f'(x)=a1+2a2x+…+nanxn-1
从而f'(1)=a1+2a2+…+nan=(3×2-1)+2(3×22-1)+…+n(3×2n-1)
=3(2+2×22+…+n×2n)-(1+2+…+n)
=
=
=
分析:(Ⅰ)先根据Sn+1=2Sn+n+5可得到Sn=2Sn-1+n+4,然后两式相减可得到Sn+1-Sn=2(Sn-Sn-1)+1,即an+1=2an+1然后两边同时加1即可得到an+1+1=2(an+1),即.从而得证.
(Ⅱ)先根据(Ⅰ)求出an的通项公式,再对函数f(x)进行求导,得到f'(x)的表达式,然后将an的表达式代入进行分组求和即可.
点评:本题主要考查等比数列的证明、求导运算和数列的分组求和.考查基础知识的综合运用和计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=
1
2
,前n项和Sn=n2an(n≥1).
(1)求数列{an}的通项公式;
(2)设b1=0,bn=
Sn-1
Sn
(n≥2)
,Tn为数列{bn}的前n项和,求证:Tn
n2
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项为a1=2,前n项和为Sn,且对任意的n∈N*,当n≥2,时,an总是3Sn-4与2-
52
Sn-1
的等差中项.
(1)求数列{an}的通项公式;
(2)设bn=(n+1)an,Tn是数列{bn}的前n项和,n∈N*,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门一模)已知数列{an}的首项a1=1,若?n∈N*,an•an+1=-2,则an=
1,n是正奇数
-2,n是正偶数
1,n是正奇数
-2,n是正偶数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项为a1=3,通项an与前n项和sn之间满足2an=Sn•Sn-1(n≥2).
(1)求证:数列{
1Sn
}
是等差数列;
(2)求数列{an}的通项公式;
(3)求数列{an}中的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=
2
3
an+1=
2an
an+1
,n∈N+
(Ⅰ)设bn=
1
an
-1
证明:数列{bn}是等比数列;
(Ⅱ)数列{
n
bn
}的前n项和Sn

查看答案和解析>>

同步练习册答案