精英家教网 > 高中数学 > 题目详情
15.定义:$\frac{n}{{P}_{1}+{P}_{2}+…+{P}_{n}}$为n个正数p1,p2,…,pn的“均倒数”,若数列{an}的前n项的“均倒数”为$\frac{1}{3n-1}$,则数列{an}通项公式为an=6n-4.

分析 设数列{an}的前n项和为 sn,由已知可得$\frac{n}{{a}_{1}+{a}_{2}+{a}_{3}+…+{a}_{n}}=\frac{n}{{s}_{n}}=\frac{1}{3n-1}$,可求得sn,再利用 an=sn-sn-1求得通项

解答 解:设数列{an}的前n项和为 sn
由已知可得$\frac{n}{{a}_{1}+{a}_{2}+{a}_{3}+…+{a}_{n}}=\frac{n}{{s}_{n}}=\frac{1}{3n-1}$,
∴${s}_{n}=3{n}^{2}-n$,
当n≥2时,${a}_{n}={s}_{n}-{s}_{n-1}=3{n}^{2}-n-[3(n-1)^{2}-(n-1)]=6n-4$;
当n=1时,a1=s1=2适合上式,
∴an=6n-4.
故答案为:6n-4

点评 本题主要考查数列通项公式的求解,利用an与Sn的关系是解决本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.方程$\frac{6}{x}={log_2}x$的根所在区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线C:x2=2py(p>0)的焦点为F,直线x=4与x轴交于点R,与抛物线交于点S,且$|{FS}|=\frac{5}{4}|{RS}|$
(1)求抛物线的标准方程;
(2)过抛物线的焦点F,作垂直于y轴的直线l,P是抛物线上的一动点(异于l与C的交点),过点P的切线交l于点A,交抛物线的准线于点M,求证:$\frac{{|{FA}|}}{{|{FM}|}}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.定义域为R的奇函数f(x)=$\frac{b-h(x)}{1+h(x)}$,其中h(x)是指数函数,且h(2)=4.
(1)求函数f(x)的解析式;
(2)求不等式f(2x-1)>f(x+1)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知关于x的不等式(x-a)(x+1-a)≥0的解集为P,若1∉P,则实数a的取值范围为(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.命题“?x∈R,4x2-3x+2<0”的否定是?x∈R,4x2-3x+2≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设等差数列{an}的公差为d,前n项和为Sn,已知a5=9,S7=49.
(1)求数列{an}的通项公式;
(2)令bn=an•2n,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin x+cos x,f′(x)是f(x)的导函数.
(I)求函数g(x)=f(x)f′(x)-f2(x)的最大值和最小正周期;
(Ⅱ)若f(x)=2f′(x),求$\frac{1+si{n}^{2}x}{co{s}^{2}x-sinxcosx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线l:x+y+a=0与圆C:x2+y2=3截得的弦长为$\sqrt{3}$,则a=(  )
A.$±\frac{3}{2}$B.$±3\sqrt{2}$C.±3D.$±\frac{3}{2}\sqrt{2}$

查看答案和解析>>

同步练习册答案