精英家教网 > 高中数学 > 题目详情
11.集合A={x|0<x2-x-2≤10},集合$B=\{x|\frac{1}{x+2}>0\}$,求A∩B.

分析 求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.

解答 解:由A中不等式变形得:$\left\{{\begin{array}{l}{{x^2}-x-2≤10}\\{{x^2}-x-2>0}\end{array}}\right.$,
整理得:$\left\{{\begin{array}{l}{(x-4)(x+3)≤0}\\{(x-2)(x+1)>0}\end{array}}\right.$,即$\left\{{\begin{array}{l}{-3≤x≤4}\\{x<-1或x>2}\end{array}}\right.$,
解得:-3≤x<-1或2<x≤4,即A=[-3,-1)∪(2,4],
由B中不等式$\frac{1}{x+2}$>0得:x+2>0,
解得:x>-2,即B=(-2,+∞),
则A∩B=(-2,-1)∪(2,4].

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知数列{an}中,a1=0,an+1=an+2n-1(n∈N*).根据数列的首项和递推公式,写出它的前五项并归纳出通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.圆心为(1,2),且与y轴相切的圆的方程是(  )
A.(x+1)2+(y+2)2=4B.(x-1)2+(y-2)2=4C.(x+1)2+(y+2)2=1D.(x-1)2+(y-2)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点C为线段AB上一点,P为直线AB外一点,PC是∠APB角的平分线,I为PC上一点,满足$\overrightarrow{BI}$=$\overrightarrow{BA}$+λ($\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$+$\frac{\overrightarrow{AP}}{|\overrightarrow{AP}|}$)(λ>0),$|\overrightarrow{PA}|-|\overrightarrow{PB}|=4$,$|\overrightarrow{PA}-\overrightarrow{PB}|=10$,则$\frac{{\overrightarrow{BI}•\overrightarrow{BA}}}{{|\overrightarrow{BA}|}}$的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(Ⅰ)求和:an+an-1b+…+abn-1+bn(ab≠0);
(Ⅱ)已知an=2n,bn=3n,将数列{an}的各项依次作为数列{cn}的奇数项,将数列b{an}的各项依次作为数列{cn}的偶数项,求数列{cn}的通项公式;
(Ⅲ)数列{an}满足a1=2,$\sum_{i=1}^n{i{a_i}=4-\frac{n+2}{{{2^{n-1}}}}}$(n≥2),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知sinθ-cosθ=$-\frac{1}{5}$,且-π<θ<0,则tanθ的值为(  )
A.±$\frac{3}{4}$B.$\frac{3}{4}$或$\frac{4}{3}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(x)的解析式为(  )
A.f(x)=2sin(πx+$\frac{π}{6}$)B.f(x)=2sin(πx+$\frac{π}{3}$)C.$f(x)=2sin({2πx-\frac{π}{6}})$D.y=2sin(πx-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若直线l1:ax+2y=0和l2:2x+(a+1)y+l=0垂直,则实数a的值为$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.三个数${log_2}\frac{1}{4},{2^{0.1}},{2^{0.2}}$的大小关系是$lo{g}_{2}\frac{1}{4}<{2}^{0.1}<{2}^{0.2}$.

查看答案和解析>>

同步练习册答案