精英家教网 > 高中数学 > 题目详情
19.在正方体ABCD-A1B1C1D1中,E,F,G,H分别是棱D1C1,B1C1,AB,AD的中点,求证:平面D1B1A∥平面EFGH.

分析 连结HF,由已知条件推导出EF∥D1B1,B1F$\underset{∥}{=}$AH,由此能证明平面D1B1A∥平面EFGH.

解答 证明:连结HF,∵在正方体ABCD-A1B1C1D1中,E,F,G,H分别是棱D1C1,B1C1,AB,AD的中点,
∴EF∥D1B1,B1F$\underset{∥}{=}$AH,∴四边形AHFB1是平行四边形,
∴HF∥AB1
∵EF∩FG=F,D1B1∩B1A=B1
EF?平面EFGH,FG?平面EFGH,D1B1?平面D1B1A,AB1?平面D1B1A,
∴平面D1B1A∥平面EFGH.

点评 本题考查面面平行的证明,是基础题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex,g(x)=x2-ax+1.
(Ⅰ)若函数y=f(x)+g(x)在区间[1,+∞)上单调递增,求实数a的取值范围;
(Ⅱ) 记h(x)=$\frac{f(x)}{g(x)}$,若$a∈[{0,\frac{1}{2}}]$,则当x∈[0,a+1]时,函数h(x)的图象是否总在不等式y>x所表示的平面区域内,请写出判断过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,已知P是边长为a的菱形ABCD所在平面外一点,∠ABC=60°,PC⊥平面ABCD,PC=a,E为PA的中点.
(1)求证:平面EDB⊥平面ABCD;
(2)求二面角A-EB-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某几何体的三视图如图所示,则该几何体的表面积为19+$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.四边形ABCD是矩形,P为平面ABCD外一点,PA⊥平面ABCD,且PA=AB,则二面角P-BC-D的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,四棱柱ABCD-A1B1C1D1中,底面ABCD是梯形,AD∥BC,侧面ABB1A1为菱形,∠DAB=∠DAA1
(1)求证:A1B⊥AD1
(2)若AD=AB=2BC,点D在平面ABB1A1上的射影恰为线段A1B的中点,∠A1AB=60°,求平面DCC1D1与平面ABB1A1所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在正方体ABCD-A1B1C1D1中,过AB、AD、DD1的中点P、Q、R作截面,求截面与面CC1D1D所成的二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求证:$\frac{|a|+|b|}{1+|a|+|b|}$≥$\frac{|a+b|}{1+|a+b|}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,两曲线y=3-x2与y=x2-2x-1所围成的图形面积是(  )
A.6B.9C.12D.3

查看答案和解析>>

同步练习册答案