【题目】已知等差数列{an},等比数列{bn}满足:a1=b1=1,a2=b2,2a3-b3=1.
(1)求数列{an},{bn}的通项公式;
(2)记cn=anbn,求数列{cn}的前n项和Sn.
【答案】(1) an=bn=1或an=2n-1,bn=3n-1.
(2) Sn=n或Sn=(n-1)×3n+1.
【解析】
(1)先解方程组得到,即得数列{an},{bn}的通项公式.(2)利用错位相减求数列{cn}的前n项和Sn.
(1)设{an}的公差为d,{bn}的公比为q,
由已知可得,
解得.
从而an=bn=1或an=2n-1,bn=3n-1.
(2)①当an=bn=1时,cn=1,所以Sn=n;
②当an=2n-1,bn=3n-1时,cn=(2n-1)×3n-1,
Sn=1+3×3+5×32+7×33+…+(2n-1)×3n-1,
3Sn=3+3×32+5×33+7×34+…+(2n-1)×3n,
从而有(1-3)Sn=1+2×3+2×32+2×33+…+2×3n-1-(2n-1)×3n
=1+2(3+32+…+3n-1)-(2n-1)×3n
=1+2×-(2n-1)×3n
=-2(n-1)×3n-2,
故Sn=(n-1)×3n+1.
综合①②,得Sn=n或Sn=(n-1)×3n+1.
科目:高中数学 来源: 题型:
【题目】某闯关游戏规则是:先后掷两枚骰子,将此试验重复n轮,第n轮的点数分别记为xn , yn , 如果点数满足xn< ,则认为第n轮闯关成功,否则进行下一轮投掷,直到闯关成功,游戏结束.
(Ⅰ)求第一轮闯关成功的概率;
(Ⅱ)如果第i轮闯关成功所获的奖金数f(i)=10000× (单位:元),求某人闯关获得奖金不超过1250元的概率;
(Ⅲ)如果游戏只进行到第四轮,第四轮后不论游戏成功与否,都终止游戏,记进行的轮数为随机变量X,求x的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱台ABC﹣A1B1C1中,CC1⊥平面ABC,AB=2A1B1=2CC1 , M,N分别为AC,BC的中点.
(1)求证:AB1∥平面C1MN;
(2)若AB⊥BC且AB=BC,求二面角C﹣MC1﹣N的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知AB=2米,AD=1米.
(1)要使矩形AMPN的面积大于9平方米,则DN的长应在什么范围内?
(2)当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知Sn为等差数列{an}的前n项和,S6=51,a5=13.
(1)求数列{an}的通项公式;
(2)数列{bn}的通项公式是bn= , 求数列{bn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,为两条不同的直线,,为两个不同的平面,给出下列命题:
①若,,则;
②若,,则;
③若,,,则;
④若,,则与所成的角和与所成的角相等.
其中正确命题的序号是( )
A.①②B.①④C.②③D.②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com