(1)当x∈(0,1]时,求f(x)的解析式;
(2)若a>-1,试判断f(x)在(0,1)上的单调性,并证明你的结论;
(3)是否存在a,使得当x∈(0,1)时,f(x)有最大值-6?
(1)解:设x∈(0,1),则-x∈[-1,0].
∵f(-x)=-2ax+,f(x)是奇函数.
∴f(x)=2ax-,x∈(0,1.
(2)证明:∵f′(x)=2a+=2(a+),
又a>-1,x∈(0,1),
∴>1.
∴a+>0,即f′(x)>0.
∴f(x)在(0,1]上是单调递增函数.
(3)解:当a>-1时,f(x)在(0,1)上单调递增.f(x)max=f(1)=-6a=-(不合题意,舍去).当a≤-1时,f′(x)=0,x=.
如下表,fmax(x)=f()=-6,解出a=-2.
x=∈(0,1).
x | (-∞,) | (,+∞) | |
F′(x) | + | 0 | - |
F(x) | 最大值 |
∴存在a=-2使f(x)在(0,1)上有最大值-6.
科目:高中数学 来源: 题型:
(08年唐山一中一模文)(12分) 设函数f(x)是定义在R上的减函数,满足f(x+y)=f(x)•f(y)且f(0)=1,数列{an}满足
a1=4,f(log3f(-1-log3=1 (n∈N*)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{nan}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
设函数f(x)是定义在R上的偶函数,并在区间(-∞,0)内单调递增,f(2a2+a+1)<f(3a2-2a+1).求a的取值范围,并在该范围内求函数y=()的单调递减区间.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练7练习卷(解析版) 题型:填空题
设函数f(x)是定义在R上的周期为2的偶函数,当x∈[0,1]时,f(x)=x+1,则f= .
查看答案和解析>>
科目:高中数学 来源:2012届度河南泌阳二高高三第一次月考数学试卷 题型:填空题
设函数f(x) 是定义在R上的偶函数,且对任意的x ÎR恒有f(x+1)=-f(x),已知当x Î[0,1]时,f(x)=3x.则
① 2是f(x)的周期; ② 函数f(x)的最大值为1,最小值为0;
③ 函数f(x)在(2,3)上是增函数; ④ 直线x=2是函数f(x)图象的一条对称轴.
其中所有正确命题的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com