【题目】已知椭圆:的右焦点为,过作互相垂直的两条直线分别与相交于,和,四点.
(1)四边形能否成为平行四边形,请说明理由;
(2)求的最小值.
【答案】(1)见解析.
(2).
【解析】
试题分析:(1)若四边形为平行四边形,则四边形为菱形, ∴与在点处互相平分,又的坐标为显然这时不是平行四边形.
(2)直线的斜率存在且不为零时,设直线的方程为,与椭圆方程联立,消去,利用韦达定理及弦长公式,
令,则.考虑当直线的斜率不存在时和直线的斜率为零时情况得到的最小值
试题解析:设点
(Ⅰ)若四边形为平行四边形,则四边形为菱形,
∴与在点处互相平分,又F的坐标为,由椭圆的对称性知垂直于轴,则垂直于轴,
显然这时不是平行四边形.
∴四边形不可能成为平行四边形.
(Ⅱ) 当直线的斜率存在且不为零时,设直线的方程为
由消去得,
∴
∴同理得,.∴,
令,则.
当直线的斜率不存在时,则
当直线的斜率为零时,则
,∴的最小值为.
科目:高中数学 来源: 题型:
【题目】社会在对全日制高中的教学水平进行评价时,常常将被清华北大录取的学生人数作为衡量的标准之一.重庆市教委调研了某中学近五年(2013年-2017年)高考被清华北大录取的学生人数,制作了如下所示的表格(设2013年为第一年).
年份(第年) | |||||
人数(人) |
(1)试求人数关于年份的回归直线方程;
(2)在满足(1)的前提之下,估计2018年该中学被清华北大录取的人数(精确到个位);
(3)教委准备在这五年的数据中任意选取两年作进一步研究,求被选取的两年恰好不相邻的概率.
参考公式:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a为实数,函数,
若,求不等式的解集;
是否存在实数a,使得函数在区间上既有最大值又有最小值?若存在,求出实数a的取值范围;若不存在,请说明理由;
写出函数在R上的零点个数不必写出过程
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小组为了研究昼夜温差对一种稻谷种子发芽情况的影响,他们分别记录了4月1日至4月5日的每天星夜温差与实验室每天每100颗种子的发芽数,得到如下资料:
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
温差 | 9 | 10 | 11 | 8 | 12 |
发芽数(颗) | 38 | 30 | 24 | 41 | 17 |
利用散点图,可知线性相关。
(1)求出关于的线性回归方程,若4月6日星夜温差,请根据你求得的线性同归方程预测4月6日这一天实验室每100颗种子中发芽颗数;
(2)若从4月1日 4月5日的五组实验数据中选取2组数据,求这两组恰好是不相邻两天数据的概率.
(公式:)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分16分)已知为实数,函数,函数.
(1)当时,令,求函数的极值;
(2)当时,令,是否存在实数,使得对于函数定义域中的任意实数,均存在实数,有成立,若存在,求出实数的取值集合;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的普通方程为,曲线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系.
(Ⅰ)求直线的参数方程和极坐标方程;
(Ⅱ)设直线与曲线相交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 命题“若,则”的否命题是“若,则”
B. 命题“,”的否定是“,”
C. “在处有极值”是“”的充要条件
D. 命题“若函数有零点,则“或”的逆否命题为真命题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com