精英家教网 > 高中数学 > 题目详情

【题目】是双曲线的右支上一点,分别为双曲线的左右焦点,的内切圆的圆心横坐标为( )

A. B. 2C. D. 3

【答案】A

【解析】

设内切圆与x轴的切点是点H,根据切线长定理和双曲线的定义,把|PF1||PF2|2,转化为|HF1||HF2|2,从而求得点H的横坐标.

如图所示:F1(﹣0)、F20),设内切圆与x轴的切点是点HPF1PF2与内切圆的切点分别为MN,由双曲线的定义可得|PF1||PF2|2a2,由圆的切线长定理知,|PM||PN|,故|MF1||NF2|2,即|HF1||HF2|2,设内切圆的圆心横坐标为x,即点H的横坐标为x,故 x+)﹣(x)=2,∴x

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某小学举办“父母养育我,我报父母恩”的活动,对六个年级(一年级到六年级的年级代码分别为1,2…,6)的学生给父母洗脚的百分比y%进行了调查统计,绘制得到下面的散点图.

(1)由散点图看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明;

(2)建立y关于x的回归方程,并据此预计该校学生升入中学的第一年(年级代码为7)给父母洗脚的百分比.

附注:参考数据:

参考公式:相关系数,若r>0.95,则y与x的线性相关程度相当高,可用线性回归模型拟合y与x的关系.回归方程中斜率与截距的最小二乘估计公式分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为为短轴的一个端点且(其中为坐标原点).

1)求椭圆的方程;

2)若 分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数单调递增,,若对任意,存在,使得成立,则称上的“追逐函数”.若,则下列四个命题:①上的“追逐函数”;②若上的“追逐函数”,则;③上的“追逐函数”;④当时,存在,使得上的“追逐函数”.其中正确命题的个数为( )

A. ①③B. ②④C. ①④D. ②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年中秋节到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量单位:进行了问卷调查,得到如下频率分布直方图:

求频率分布直方图中a的值;

以频率作为概率,试求消费者月饼购买量在的概率;

已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的,请根据这1000名消费者的人均月饼购买量估计该超市应准备多少吨月饼恰好能满足市场需求频率分布直方图中同一组的数据用该组区间的中点值作代表

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在六面体中,平面平面平面,且.

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面.

1)若的中点,的中点,求证:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆在圆外部且与圆相切,同时还在圆内部与圆相切.

1)求动圆圆心的轨迹方程;

2)记(1)中求出的轨迹为轴的两个交点分别为上异于的动点,又直线轴交于点,直线分别交直线两点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年1月1日,济南轨道交通号线试运行,济南轨道交通集团面向广大市民开展“参观体验,征求意见”活动,市民可以通过济南地铁APP抢票,小陈抢到了三张体验票,准备从四位朋友小王,小张,小刘,小李中随机选择两位与自己一起去参加体验活动,则小王被选中的概率为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案