【题目】在四棱锥中,平面平面.底面为梯形,,,且,,.
(1)求证:;
(2)求二面角的余弦值;
(3)若是棱的中点,求证:对于棱上任意一点,与都不平行.
【答案】(1)见解析;(2);(3)见解析
【解析】
(1)由面面垂直的性质可得平面,再利用线面垂直的性质即可得证;
(2)建立空间直角坐标系后,表示出各点坐标,求出平面的一个法向量是,平面的一个法向量为,利用即可得解;
(3)利用反证法,假设棱上存在点,,由题意,,设可得,此方程无解,故假设错误,即可得证.
(1)证明:因为平面平面, 平面平面,
平面, ,
所以平面,
又因为平面,
所以.
(2)因为,,所以.
由(1)得平面,所以,
故,,两两垂直.
如图,以为原点,,,所在直线分别为轴,
建立空间直角坐标系,
则,,,.
因为平面,所以平面的一个法向量是.
而,,
设平面的一个法向量为,
则由 得 取,有,
所以.
由题知,二面角为锐角,所以二面角的余弦值为.
(3)证明:假设棱上存在点,,设.
依题意,可知,,,
所以,,设,
根据假设,有 ,而此方程组无解,故假设错误,问题得证.
科目:高中数学 来源: 题型:
【题目】随着我国经济实力的不断提升,居民收人也在不断增加。某家庭2018年全年的收入与2014年全年的收入相比增加了一倍,实现翻番.同时该家庭的消费结构随之也发生了变化,现统计了该家庭这两年不同品类的消费额占全年总收入的比例,得到了如下折线图:
则下列结论中正确的是( )
A. 该家庭2018年食品的消费额是2014年食品的消费额的一半
B. 该家庭2018年教育医疗的消费额与2014年教育医疗的消费额相当
C. 该家庭2018年休闲旅游的消费额是2014年休闲旅游的消费额的五倍
D. 该家庭2018年生活用品的消费额是2014年生活用品的消费额的两倍
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的左、右顶点分别为,,上、下顶点分别为,,且,为等边三角形,过点的直线与椭圆在轴右侧的部分交于、两点.
(1)求椭圆的标准方程;
(2)求四边形面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥的底面中,,,平面,是的中点,且
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)线段上是否存在点,使得,若存在指出点的位置,若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,过椭圆右焦点的直线与椭圆交于,两点,当直线与轴垂直时,.
(1)求椭圆的标准方程;
(2)当直线与轴不垂直时,在轴上是否存在一点(异于点),使轴上任意点到直线,的距离均相等?若存在,求点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中不正确的是( )
A.设为直线,为平面,且;则“”是“”的充要条件
B.设随机变量,若,则
C.若不等式()恒成立,则的取值范围是
D.已知直线经过点,则的取值范围是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦距为2,过右焦点和短轴一个端点的直线的斜率为,为坐标原点.
(1)求椭圆的方程;
(2)设点,直线与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N,若|OM|·|ON|=2,求证:直线l经过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com