精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线C的参数方程为t为参数),直线过点且倾斜角为,以坐标原点O为极点,x轴正半轴为极轴,取相同的单位长度建立极坐标系.

1)写出曲线C的极坐标方程和直线的参数方程;

2)若直线l与曲线C交于两点,求的值.

【答案】1t为参数);(21.

【解析】

1)先将曲线的参数方程化为普通方程(直角坐标方程),再将直角坐标方程化为极坐标方程,根据题意直接写出直线的参数方程;

2)将直线的参数方程代入曲线得到关于的一元二次方程,根据参数的几何意义得出的值.

1)曲线t为参数),化为直角坐标方程为

再化为极坐标方程为

直线的参数方程为t为参数)

2)将直线的参数方程代入曲线C,得

所以

P之间,所以

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数fx)是定义在R上的偶函数,且对任意的xR恒有fx+1)=fx1),已知当x[01]时,fx)=(1x,则

2是函数fx)的一个周期;

②函数fx)在(12)上是减函数,在(23)上是增函数;

③函数fx)的最大值是1,最小值是0

x1是函数fx)的一个对称轴;

⑤当x∈(34)时,fx)=(x3.

其中所有正确命题的序号是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C2是圆心极坐标为(3π),半径为1的圆.

1)求曲线C1的参数方程和C2的直角坐标方程;

2)设MN分别为曲线C1C2上的动点,求|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱ABCA1B1C1,平面A1ACC1⊥平面ABC,∠ABC90°,∠BAC30°A1AA1CACEF分别是ACA1B1的中点.

1)证明:EFBC

2)求直线EF与平面A1BC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)求的单调区间;

2)设,且有两个极值点其中,求的最小值;

3)证明:nN*n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列{an}满足a11a21an+2an+an+1,则称数列{an}为斐波那契数列,斐波那契螺旋线是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线,如图所示的7个正方形的边长分别为a1a2a7,在长方形ABCD内任取一点,则该点不在任何一个扇形内的概率为(

A.1B.1C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|xa|+|x+2|.

1)若a1.解不等式fxx21

2)若a0b0c0.fx)的最小值为4bc.求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆M1ab0)的长轴长为2,离心率为,过点(01)的直线lM交于AB两点,且

1)求M的方程;

2)求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知顶点是坐标原点的抛物线的焦点轴正半轴上,圆心在直线上的圆轴相切,且关于点对称.

(1)求的标准方程;

(2)过点的直线交于,与交于求证:

查看答案和解析>>

同步练习册答案