精英家教网 > 高中数学 > 题目详情

【题目】将正整数123n排成数表如表所示,即第一行3个数,第二行6个数,且后一行比前一行多3个数,若第i行,第j列的数可用表示,则100可表示为______

1

2

3

4

5

6

7

8

1

1

2

3

2

9

8

7

6

5

4

3

10/p>

11

12

13

14

15

16

17

【答案】

【解析】

由等差数列可得第8行的最后第1个数为85,第8行共24个数,第一个为106,可得100为第8行的第7个数,可得答案.

由题意,第一行有个数,第二行有个数,

每一行的数字个数组成3为首项3为公差的等差数列,

n行有个数,

由求和公式可得前n行共个数,

经验证可得第8行的最后第1个数为85

按表中的规律可得第8行共24个数,第一个为108

为第8行的第7个数,

故答案为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,圆C的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为

1求圆C的普通方程和直线l的直角坐标方程;

2M是直线l上任意一点,过M做圆C切线,切点为AB,求四边形AMBC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的方程为,曲线为参数,),在以原点为极点,轴正半轴为极轴的极坐标系中,曲线.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线有公共点,且直线与曲线的交点恰好在曲线轴围成的区域(不含边界)内,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生将语文、数学、英语、物理、化学、生物6科的作业安排在周六、周日完成,要求每天至少完成两科,且数学,物理作业不在同一天完成,则完成作业的不同顺序种数为( )

A. 600B. 812C. 1200D. 1632

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系.已知曲线的参数方程为为参数),为过点的两条直线,两点,两点,且的倾斜角为.

(1)求的极坐标方程;

(2)当时,求点四点的距离之和的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆 的左焦点为,右顶点为,上顶点为

1)已知椭圆的离心率为,线段中点的横坐标为,求椭圆的标准方程;

2)已知△外接圆的圆心在直线上,求椭圆的离心率的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了更好地服务民众,某共享单车公司通过向共享单车用户随机派送每张面额为0元,1元,2元的三种骑行券.用户每次使用扫码用车后,都可获得一张骑行券.用户骑行一次获得1元奖券、获得2元奖券的概率分别是0.5、0.2,且各次获取骑行券的结果相互独立.

(I)求用户骑行一次获得0元奖券的概率;

(II)若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列满足 .

(1)求的通项公式;

(2)各项均为正数的等比数列中, ,求的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】五一期间,为了满足广大人民的消费需求,某共享单车公司欲投放一批共享单车,单车总数不超过100辆,现有AB两种型号的单车:其中A型车为运动型,成本为400辆,骑行半小时需花费元;B型车为轻便型,成本为2400辆,骑行半小时需花费1若公司投入成本资金不能超过8万元,且投入的车辆平均每车每天会被骑行2次,每次不超过半小时不足半小时按半小时计算,问公司如何投放两种型号的单车才能使每天获得的总收入最多,最多为多少元?

查看答案和解析>>

同步练习册答案