精英家教网 > 高中数学 > 题目详情

【题目】天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是_______

【答案】

【解析】

由题意可知每环的扇面形石块数是一个以9为首项,9为公差的等差数列,据此确定第二十七环的扇面形石块数和上、中、下三层坛所有的扇面形石块数即可.

第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,

则依题意得:每环的扇面形石块数是一个以9为首项,9为公差的等差数列,

所以,an9+(n1×99n

所以,a279×27243

27项和为:3402.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点,斜率为1的直线与抛物线交于点,且.

(1)求抛物线的方程;

(2)过点作直线交抛物线于不同于的两点,若直线分别交直线两点,求取最小值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三家企业产品的成本分别为100001200015000,其成本构成如下图所示,则关于这三家企业下列说法错误的是(

A.成本最大的企业是丙企业B.费用支出最高的企业是丙企业

C.支付工资最少的企业是乙企业D.材料成本最高的企业是丙企业

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个三角形数表按如下方式构成(如图:其中项数):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:为数表中第行的第个数.

……

(1)求第2行和第3行的通项公式

(2)证明:数表中除最后2行外每一行的数都依次成等差数列,并求关于的表达式;

(3)若,试求一个等比数列,使得,且对于任意的,均存在实数,当时,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面平面.四边形为正方形,四边形为梯形,且

(1)求证:

(2)求直线与平面所成角的正弦值;

(3)线段上是否存在点,使得直线平面若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校需要从甲、乙两名学生中选一人参加数学竞赛,抽取了近期两人次数学考试的成绩,统计结果如下表:

第一次

第二次

第三次

第四次

第五次

甲的成绩(分)

乙的成绩(分)

(1)若从甲、乙两人中选出一人参加数学竞赛,你认为选谁合适?请说明理由.

(2)若数学竞赛分初赛和复赛,在初赛中有两种答题方案:

方案一:每人从道备选题中任意抽出道,若答对,则可参加复赛,否则被淘汰.

方案二:每人从道备选题中任意抽出道,若至少答对其中道,则可参加复赛,否则被润汰.

已知学生甲、乙都只会道备选题中的道,那么你推荐的选手选择哪种答题方条进人复赛的可能性更大?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为椭圆上任意一点,直线与圆交于两点,点为椭圆的左焦点.

(Ⅰ)求椭圆的离心率及左焦点的坐标;

(Ⅱ)求证:直线与椭圆相切;

(Ⅲ)判断是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确命题的序号是(    )

①函数fx)在定义域R内可导,f1)=0”函数fx)在x1处取极值的充分不必要条件;

②函数fx)=x3ax[12]上单调递增,则a4

③在一次射箭比赛中,甲、乙两名射箭手各射箭一次.设命题p甲射中十环,命题q乙射中十环,则命题至少有一名射箭手没有射中十环可表示为(¬p)∨(¬q);

④若椭圆左、右焦点分别为F1F2,垂直于x轴的直线交椭圆于AB两点,当直线过右焦点时,ABF1的周长取最大值

A.①③④B.②③④C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1) 解关于x的不等式

(2) 若函数的图像恒在函数图像的上方,求m的取值范围.

查看答案和解析>>

同步练习册答案