【题目】已知函数,,在处的切线方程为
(1)若,证明:;
(2)若方程有两个实数根,,且,证明:
【答案】(1)见解析(2)见解析
【解析】
Ⅰ求得的导数,可得切线的斜率和切点,由切线方程可得的解析式,令,求得导数和单调性,即可得证;
Ⅱ设在处的切线方程为,可得,令,求得导数和单调性,运用函数方程的转化,以及函数的单调性的运用,即可得证.
Ⅰ由题意,所以,
又,所以,
若,则,与矛盾,故,;
可知,,,由,可得,
令,,
当时,,
当时,设,,
故函数在上单调递增,又,
所以当时,,当时,,
所以函数在区间上单调递减,在区间上单调递增,
故,即,
故;
Ⅱ设在处的切线方程为,
易得,,令,
即,,
当时,,
当时,设,,
故函数在上单调递增,又,
所以当时,,当时,,
所以函数在区间上单调递减,在区间上单调递增,
故F,,
设的根为,则,
又函数单调递减,故,故,
设在处的切线方程为,易得,
由Ⅰ得,设的根为,则,
又函数单调递增,故,故,
又,.
科目:高中数学 来源: 题型:
【题目】一个孩子的身高与年龄(周岁)具有相关关系,根据所采集的数据得到线性回归方程,则下列说法错误的是( )
A.回归直线一定经过样本点中心
B.斜率的估计值等于6.217,说明年龄每增加一个单位,身高就约增加6.217个单位
C.年龄为10时,求得身高是,所以这名孩子的身高一定是
D.身高与年龄成正相关关系
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:)的影响,对近年的年宣传费和年销售量作了初步统计和处理,得到的数据如下:
年宣传费(单位:万元) | ||||
年销售量(单位:) |
,.
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出关于的线性回归方程;
(3)若公司计划下一年度投入宣传费万元,试预测年销售量的值.
参考公式
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线和的距离之和的最小值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知点是抛物线上一定点,直线的倾斜角互补,且与抛物线另交于,两个不同的点.
(1)求点到其准线的距离;
(2)求证:直线的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,(其中,,),在上既无最大值,也无最小值,且,则下列结论成立的是( )
A.若对任意,则
B.的图象关于点中心对称
C.函数的单调减区间为
D.函数的图象相邻两条对称轴之间的距离是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了推进课堂改革,提高课堂效率,银川一中引进了平板教学,开始推进“智慧课堂”改革.学校教务处为了了解我校高二年级同学平板使用情况,从高二年级923名同学中抽取50名同学进行调查.先用简单随机抽样从923人中剔除23人,剩下的900人再按系统抽样方法抽取50人,则在这923人中,每个人被抽取的可能性 ( )
A.都相等,且为B.不全相等C.都相等,且为D.都不相等
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《数书九章》是中国南宋时期杰出数学家秦九韶的著作,其中在卷五“三斜求积”中提出了已知三角形三边、、,求面积的公式,这与古希腊的海伦公式完全等价,其求法是“以小斜冥并大斜冥减中斜冥,余半之,自乘于上,以小斜冥乘大斜冥减上,余四约之,为实.一为从隅,开平方得积”若把以上这段文字写出公式,即若,则.
(1)已知的三边,,,且,求证:的面积.
(2)若,,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.
(Ⅰ)应从老、中、青员工中分别抽取多少人?
(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如右表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
员工 项目 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
继续教育 | × | × | ○ | × | ○ | ○ |
大病医疗 | × | × | × | ○ | × | × |
住房贷款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
赡养老人 | ○ | ○ | × | × | × | ○ |
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com