精英家教网 > 高中数学 > 题目详情
(2011•徐州模拟)如图,在△ABC和△AEF中,B是EF的中点,AB=EF=1,CA=CB=2,若
AB
AE
+
AC
AF
=2,则
EF
BC
的夹角等于
π
3
π
3
分析:由题意可得
BC
2
=4=(
AC
-
AB
2,由此求得
AC
AB
=
1
2
,由
AB
AE
+
AC
AF
=2以及两个向量的加减法的法则及其几何意义可求得
EF
BC
=1,即可求得
EF
BC
的夹角的余弦值.
解答:解:由题意可得
BC
2
=4=(
AC
-
AB
2=
AC
2+
AB
2-2
AC
AB
=4+1-2
AC
AB

AC
AB
=
1
2

AB
AE
+
AC
AF
=2,
可得
AB
•(
AB
+
BE
)+
AC
•(
AB
+
BF

=
AB
2+
AB
BE
+
AC
AB
+
AC
BF
=1+
AB
•(-
BF
)+
1
2
+
AC
BF

=
3
2
+
BF
•(
AC
-
AB
)=
3
2
+
1
2
EF
BC
=2,
EF
BC
=1,即 1×2×cos<
EF
BC
>=1,
∴cos<
EF
BC
>=
1
2

EF
BC
的夹角等于
π
3

故答案为:
π
3
点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义、同时考查了运算求解的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•徐州模拟)若m∈(0,3),则直线(m+2)x+(3-m)y-3=0与x轴、y轴围成的三角形的面积小于
9
8
的概率为
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•徐州模拟)若中心在原点、焦点在坐标轴上的双曲线的一条渐近线方程为x+3y=0,则此双曲线的离心率为
10
3
10
10
3
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•徐州模拟)已知点P,A,B,C是球O表面上的四个点,且PA,PB,PC两两成60°角,PA=PB=PC=1cm,则球的表面积为
2
2
cm2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•徐州模拟)过点P(5,4)作直线l与圆O:x2+y2=25交于A,B两点,若PA=2,则直线l的方程为
y=4或40x-9y-164=0
y=4或40x-9y-164=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•徐州模拟)在平面直角坐标系xOy中,已知圆B:(x-1)2+y2=16与点A(-1,0),P为圆B上的动点,线段PA的垂直平分线交直线PB于点R,点R的轨迹记为曲线C.
(1)求曲线C的方程;
(2)曲线C与x轴正半轴交点记为Q,过原点O且不与x轴重合的直线与曲线C的交点记为M,N,连接QM,QN,分别交直线x=t(t为常数,且t≠2)于点E,F,设E,F的纵坐标分别为y1,y2,求y1•y2的值(用t表示).

查看答案和解析>>

同步练习册答案