精英家教网 > 高中数学 > 题目详情
4.已知向量$\overrightarrow{m}$=(sinx,a),$\overrightarrow{n}$=(sinx,-2cosx),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)若f($\frac{π}{3}$)=1,求a的值;
(2)是否存在常数a,使得f(x)的最大值为4.

分析 (1)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$=sin2x-2acosx.利用f($\frac{π}{3}$)=1,化简整理即可得出.
(2)f(x)=1-cos2x-2acosx=-(cosx+a)2+1+a2.假设存在常数a,使得f(x)的最大值为4.对a分类讨论,利用二次函数的单调性与三角函数的单调性即可得出.

解答 解:(1)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$=sin2x-2acosx.
∵f($\frac{π}{3}$)=1,
∴$(sin\frac{π}{3})^{2}$-2a$cos\frac{π}{3}$=1,
∴$\frac{3}{4}$-a=1,解得a=-$\frac{1}{4}$.
(2)f(x)=sin2x-2acosx=1-cos2x-2acosx=-(cosx+a)2+1+a2
假设存在常数a,使得f(x)的最大值为4.
则当a≥1时,-(-1+a)2+1+a2=4,解得a=2.
当a≤-1时,-(1+a)2+1+a2=4,解得a=-2.
当-1<a<1时,1+a2=4,解得a=$±\sqrt{3}$,舍去.
综上可得:a=±2.
因此:存在常数a=±2,使得f(x)的最大值为4.

点评 本题考查了二次函数的单调性、三角函数的单调性、数量积运算性质,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设U是全集,集合A、B满足A$\stackrel{?}{≠}$B,则下列命题不成立的是(  )
A.A∪B=BB.A∩B=AC.A∪(CUB)=UD.(CUA)∪B=U

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a,b为实数,若复数$\frac{1+2i}{a+bi}$=1+i,则(  )
A.a=1,b=3B.a=3,b=1C.a=$\frac{1}{2}$,b=$\frac{3}{2}$D.a=$\frac{3}{2}$,b=$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法正确的是(  )
A.数列中不能重复出现同一个数
B.1,2,3,4与4,3,2,1是同一数列
C.1,1,1,1…不是数列
D.两个数列的每一项相同,则数列相同

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=$\frac{1}{2}$x2-2ax+(2a-1)lnx,其中a∈R.
(I)a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程.
(Ⅱ)讨论函数y=f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|x2-x-2=0},B={x|ax2+2x+2=0}.如果B?A,试确定实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合M={x|y=x2+1},N={y|y=x2+1},则M∩N=[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,内角A,B,C的对边分别是a,b,c,已知c=2,C=$\frac{π}{3}$.
(1)求a+b的取值范围;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=$\frac{\sqrt{1-{x}^{2}}}{|x+1|+|x-1|}$的图象关于(  )
A.原点对称B.y轴对称C.x轴对称D.直线y=x对称

查看答案和解析>>

同步练习册答案