精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)若,求的极坐标方程;

2)若恰有4个公共点,求的取值范围.

【答案】12

【解析】

1)由参数方程消参后,可得其普通直角坐标方程,结合可求出其极坐标方程.

2)由题意首先确定曲线的形状为原点为圆心,半径为24的两个同心圆,由公共点个数判断出与圆相交,即可得关于半径的不等式,从而求出半径的取值范围.

解:(1)由为参数),得

,得,即

所以的极坐标方程为.

2)由题意可知,则曲线表示圆心为,半径为的圆,

,得,则由两个同心圆组成,原点为圆心,半径为24

因为恰有4个公共点,所以圆与圆相交,

所以,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地计划在水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.

1)求未来4年中,至多有1年的年入流量超过120的概率;

2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:

年入流量

发电机最多可运行台数

1

2

3

若某台发电机运行,则该台发电机年净利润为5000万元;若某台发电机未运行,则该台发电机年维护费与年入流量有如下关系:

年入流量

一台未运行发电机年维护费

500

800

欲使水电站年净利润最大,应安装发电机多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20183月份,上海出台了《关于建立完善本市生活垃圾全程分类体系的实施方案》,4月份又出台了《上海市生活垃圾全程分类体系建设行动计划(2018-2020年)》,提出到2020年底,基本实现单位生活垃圾强制分类全覆盖,居民区普遍推行生活垃圾分类制度.为加强社区居民的垃圾分类意识,推动社区垃圾分类正确投放,某社区在健身广场举办了垃圾分类,从我做起生活垃圾分类大型宣传活动,号召社区居民用实际行动为建设绿色家园贡献一份力量,为此需要征集一部分垃圾分类志愿者.

1)为调查社区居民喜欢担任垃圾分类志愿者是否与性别有关,现随机选取了一部分社区居民进行调查,其中被调查的男性居民和女性居民人数相同,男性居民中不喜欢担任垃圾分类志愿者占男性居民的,女性居民中不喜欢担任垃圾分类志愿者占女性居民的,若研究得到在犯错误概率不超过0.010的前提下,认为居民喜欢担任垃圾分类志愿者与性别有关,则被调查的女性居民至少多少人?

0.100

0.050

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

2)某垃圾站的日垃圾分拣量(千克)与垃圾分类志愿者人数(人)满足回归直线方程,数据统计如下:

志愿者人数(人)

2

3

4

5

6

日垃圾分拣量(千克)

25

30

40

45

已知,根据所给数据求和回归直线方程,附:

3)用(2)中所求的线性回归方程得到与对应的日垃圾分拣量的估计值.当分拣数据与估计值满足时,则将分拣数据称为一个正常数据.现从5个分拣数据中任取3个,记表示取得正常数据的个数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建建立极坐标系,曲线C的极坐标方程为

求曲线C的直角坐标方程与直线l的极坐标方程;

若直线与曲线C交于点不同于原点,与直线l交于点B,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的极值;

(Ⅱ)若实数为整数,且对任意的时,都有恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,将曲线上的点按坐标变换,得到曲线轴负半轴的交点,经过点且倾斜角为的直线与曲线的另一个交点为,与曲线的交点分别为(点在第二象限).

(Ⅰ)写出曲线的普通方程及直线的参数方程;

(Ⅱ)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个由正四棱锥和正四棱柱构成的组合体,正四棱锥的侧棱长为6为正四棱锥高的4倍.当该组合体的体积最大时,点到正四棱柱外接球表面的最小距离是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某工厂的一个车间抽取某种产品50件,产品尺寸(单位:cm)落在各个小组的频数分布如下表:

数据分组

[12.515.5

[15.518.5

[18.521.5

[21.524.5

[24.527.5

[27.530.5

[30.533.5

频数

3

8

9

12

10

5

3

1)根据频数分布表,求该产品尺寸落在[27.533.5]内的概率;

2)求这50件产品尺寸的样本平均数(同一组中的数据用该组区间的中点值作代表);

3)根据频数分布对应的直方图,可以认为这种产品尺寸服从正态分布,其中近似为样本平均值近似为样本方差,经计算得.利用该正态分布,求.

附:(1)若随机变量服从正态分布,则;(2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌布娃娃做促销活动:已知有50个布娃娃,其中一些布娃娃里面有奖品,参与者可以先在50个布娃娃中购买5个,看完5个布娃娃里面的结果再决定是否将剩下的布娃娃全部购买,设每个布娃娃有奖品的概率为,且各个布娃娃是否有奖品相互独立.

1)记5个布娃娃中有1个有奖品的概率为,当时,的最大值,求

2)假如这5个布娃娃中恰有1个有奖品,以上问中的作为p的值.已知每次购买布娃娃需要2元,若有中奖,则中奖者每次可得奖金15.以最终奖金的期望作为决策依据,是否该买下剩下所有的45个布娃娃;

3)若已知50件布娃娃中有10个布娃娃有奖品,从这堆布娃娃中任意购买5个,若抽到k个有奖品可能性最大,求k的值.k为正整数)

查看答案和解析>>

同步练习册答案