精英家教网 > 高中数学 > 题目详情

【题目】若给定椭圆和点,则称直线为椭圆C伴随直线

1)若在椭圆C上,判断椭圆C与它的伴随直线的位置关系(当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由;

2)命题:若点在椭圆C的外部,则直线与椭圆C必相交.写出这个命题的逆命题,判断此逆命题的真假,说明理由;

3)若在椭圆C的内部,过N点任意作一条直线,交椭圆CAB,交M点(异于AB),设,问是否为定值?说明理由.

【答案】1l与椭圆C相切.见解析(2)逆命题:若直线与椭圆C相交,则点在椭圆C的外部.是真命题.见解析(3)为定值0,见解析

【解析】

1 ,由根的差别式能得到l与椭圆C相切.

2)逆命题:若直线与椭圆C相交,则点在椭圆C的外部.是真命题.联立方程得.由,能求出在椭圆C的外部.

3)此时与椭圆相离,设代入椭圆,利用M上,得.由此能求出

解:(1

与椭圆C相切.

2)逆命题:若直线与椭圆C相交,

则点在椭圆C的外部.

是真命题.联立方程得

在椭圆C的外部.

3)同理可得此时与椭圆相离,设

代入椭圆,利用M上,

,整理得

同理得关于的方程,类似.

的两根

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是各项均为非零实数的数列的前n项和,给出如下两个命题上:命题p是等差数列;命题q:等式对任意恒成立,其中kb是常数.

1)若pq的充分条件,求kb的值;

2)对于(1)中的kb,问p是否为q的必要条件,请说明理由;

3)若p为真命题,对于给定的正整数n和正数M,数列满足条件,试求 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴是短轴的两倍,以短轴一个顶点和长轴一个顶点为端点的线段作直径的圆的周长等于,直线l与椭圆C交于两点,其中直线l不过原点.

1)求椭圆C的方程;

2)设直线的斜率分别为,其中.的面积为S.分别以为直径的圆的面积依次为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为调查学生喜欢应用统计课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:

喜欢统计课程

不喜欢统计课程

男生

20

5

女生

10

20

1判断是否有995%的把握认为喜欢应用统计课程与性别有关?

2用分层抽样的方法从喜欢统计课程的学生中抽取6名学生作进一步调查,将这6名学生作为一个样本,从中任选2人,求恰有1个男生和1个女生的概率

临界值参考:

010

005

025

0010

0005

0001

2706

3841

5024

6635

7879

10828

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点的椭圆和抛物线有相同的焦点,椭圆过点,抛物线的顶点为原点.

求椭圆和抛物线的方程;

设点P为抛物线准线上的任意一点,过点P作抛物线的两条切线PAPB,其中AB为切点.

设直线PAPB的斜率分别为,求证:为定值;

若直线AB交椭圆CD两点,分别是的面积,试问:是否有最小值?若有,求出最小值;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线焦点为为抛物线上在第一象限内一点,为原点,面积为.

1)求抛物线方程;

2)过点作两条直线分别交抛物线于异于点的两点,且两直线斜率之和为

i)若为常数,求证直线过定点

ii)当改变时,求(i)中距离最近的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.

(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?

有兴趣

没兴趣

合计

55

合计

(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从四所高校中选2.

(Ⅰ)求甲、乙、丙三名同学都选高校的概率;

(Ⅱ)若已知甲同学特别喜欢高校,他必选校,另在三校中再随机选1所;而同学乙和丙对四所高校没有偏爱,因此他们每人在四所高校中随机选2.

(ⅰ)求甲同学选高校且乙、丙都未选高校的概率;

(ⅱ)记为甲、乙、丙三名同学中选校的人数,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点

(Ⅰ)求椭圆的方程,并求其离心率;

(Ⅱ)过点轴的垂线,设点为第四象限内一点且在椭圆上(点不在直线上),直线关于的对称直线与椭圆交于另一点.设为坐标原点,判断直线与直线的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案