A. | (3,10) | B. | $(3,\frac{10}{3})$ | C. | $(1,\frac{10}{3})$ | D. | $(\frac{1}{3},10)$ |
分析 作函数$f(x)=\left\{{\begin{array}{l}{|{{log}_3}x|,0<x≤3}\\{-3x+10,x>3}\end{array}}\right.$的图象,设a<b<c,从而可得ab=1,3<c<$\frac{10}{3}$,从而解得.
解答 解:作函数$f(x)=\left\{{\begin{array}{l}{|{{log}_3}x|,0<x≤3}\\{-3x+10,x>3}\end{array}}\right.$的图象如下,
,
不妨设a<b<c,
∵f(a)=f(b)=f(c),
∴|log3a|=|log3b|=10-3c,
∴ab=1,3<c<$\frac{10}{3}$,
∴abc的取值范围是(3,$\frac{10}{3}$);
故选:B.
点评 本题考查了分段函数的应用及数形结合的思想应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com