精英家教网 > 高中数学 > 题目详情

【题目】已知函数.(是自然对数的底数)

1)求的单调递减区间;

2)记,若,试讨论上的零点个数.(参考数据:

【答案】1.(2)见解析

【解析】

1)求出导函数,解不等式,结合三角函数的性质可得解;

2)求出,令,由导数的知识求得的单调性,然后通过讨论的正负确定的单调性的极值,确定其零点个数.

解:(1,定义域为

解得,解得

的单调递减区间为

2)由已知,∴

,则

,∴当时,

时,

上单调递增,在上单调递减,

上单调递增,在上单调递减.

①当,即时,,∴

,使得

∴当时,;当时,

上单调递增,在上单调递减.

,∴

又∵

∴由零点存在性定理可得,此时上仅有一个零点.

②若时,

又∵上单调递增,在上单调递减,又

,使得

且当时,;当时,

上单调递减,在上单调递增.

,∴

,∴

又∵,由零点存在性定理可得,

内各有一个零点,

即此时上有两个零点.

综上所述,当时,上仅有一个零点;

时,上有两个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

I)若,求函数的极值和单调区间;

II)若在区间上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,数列中的每一项均在集合中,且任意两项不相等,又对于任意的整数,均有.例如时,数列

1)当时,试求满足条件的数列的个数;

2)当,求所有满足条件的数列的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了让居民了解垃圾分类,养成垃圾分类的习惯,让绿色环保理念深入人心.某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾.某班按此四类由10位同学组成四个宣传小组,其中可回收物与餐厨垃圾宣传小组各有2位同学,有害垃圾与其他垃圾宣传小组各有3位同学.现从这10位同学中选派5人到某小区进行宣传活动,则每个宣传小组至少选派1人的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊数学家阿波罗尼奥斯发现:平面上到两定点距离之比为常数的点的轨迹是一个圆心在直线上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:如图,在长方体中,,点在棱上,,动点满足.若点在平面内运动,则点所形成的阿氏圆的半径为________;若点在长方体内部运动,为棱的中点,的中点,则三棱锥的体积的最小值为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,若存在常数M,使得对任意中至少有一个不小于M,则记作,那么下列命题正确的是( ).

A.,则数列各项均大于或等于M

B.,则

C.,则

D.,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天津市某学校组织教师进行学习强国知识竞赛,规则为:每位参赛教师都要回答3个问题,且对这三个问题回答正确与否相互之间互不影响,若每答对1个问题,得1分;答错,得0分,最后按照得分多少排出名次,并分一、二、三等奖分别给予奖励.已知对给出的3个问题,教师甲答对的概率分别为p.若教师甲恰好答对3个问题的概率是,则________;在前述条件下,设随机变量X表示教师甲答对题目的个数,则X的数学期望为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程;

(2)证明:在区间上有且仅有个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆与轴相切于点,过点分别作动圆异于轴的两切线,设两切线相交于,点的轨迹为曲线.

1)求曲线的轨迹方程;

2)过的直线与曲线相交于不同两点,若曲线上存在点,使得成立,求实数的范围.

查看答案和解析>>

同步练习册答案