【题目】已知函数.(是自然对数的底数)
(1)求的单调递减区间;
(2)记,若,试讨论在上的零点个数.(参考数据:)
【答案】(1).(2)见解析
【解析】
(1)求出导函数,解不等式,结合三角函数的性质可得解;
(2)求出,令,由导数的知识求得的单调性,然后通过讨论的正负确定的单调性的极值,确定其零点个数.
解:(1),定义域为.
.
由解得,解得.
∴的单调递减区间为.
(2)由已知,∴.
令,则.
∵,∴当时,;
当时,,
∴在上单调递增,在上单调递减,
即在上单调递增,在上单调递减.
∵,.
①当,即时,,∴.
∴,使得,
∴当时,;当时,,
∴在上单调递增,在上单调递减.
∵,∴.
又∵,
∴由零点存在性定理可得,此时在上仅有一个零点.
②若时,,
又∵在上单调递增,在上单调递减,又,
∴,,使得,,
且当、时,;当时,.
∴在和上单调递减,在上单调递增.
∵,∴.
∵,∴.
又∵,由零点存在性定理可得,
在和内各有一个零点,
即此时在上有两个零点.
综上所述,当时,在上仅有一个零点;
当时,在上有两个零点.
科目:高中数学 来源: 题型:
【题目】已知,数列中的每一项均在集合中,且任意两项不相等,又对于任意的整数,均有.例如时,数列为或.
(1)当时,试求满足条件的数列的个数;
(2)当,求所有满足条件的数列的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了让居民了解垃圾分类,养成垃圾分类的习惯,让绿色环保理念深入人心.某市将垃圾分为四类:可回收物,餐厨垃圾,有害垃圾和其他垃圾.某班按此四类由10位同学组成四个宣传小组,其中可回收物与餐厨垃圾宣传小组各有2位同学,有害垃圾与其他垃圾宣传小组各有3位同学.现从这10位同学中选派5人到某小区进行宣传活动,则每个宣传小组至少选派1人的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊数学家阿波罗尼奥斯发现:平面上到两定点,距离之比为常数且的点的轨迹是一个圆心在直线上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:如图,在长方体中,,点在棱上,,动点满足.若点在平面内运动,则点所形成的阿氏圆的半径为________;若点在长方体内部运动,为棱的中点,为的中点,则三棱锥的体积的最小值为___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列,若存在常数M,使得对任意,与中至少有一个不小于M,则记作,那么下列命题正确的是( ).
A.若,则数列各项均大于或等于M;
B.若,则;
C.若,,则;
D.若,则;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天津市某学校组织教师进行“学习强国”知识竞赛,规则为:每位参赛教师都要回答3个问题,且对这三个问题回答正确与否相互之间互不影响,若每答对1个问题,得1分;答错,得0分,最后按照得分多少排出名次,并分一、二、三等奖分别给予奖励.已知对给出的3个问题,教师甲答对的概率分别为,,p.若教师甲恰好答对3个问题的概率是,则________;在前述条件下,设随机变量X表示教师甲答对题目的个数,则X的数学期望为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆与轴相切于点,过点,分别作动圆异于轴的两切线,设两切线相交于,点的轨迹为曲线.
(1)求曲线的轨迹方程;
(2)过的直线与曲线相交于不同两点,若曲线上存在点,使得成立,求实数的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com