精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=|x-2|-|x-5|.
(Ⅰ)求函数f(x)的值域;
(Ⅱ)不等式f(x)+2m-1≥0对于任意的x∈R都成立,求m的取值范围.

分析 (Ⅰ)通过对x的取值范围的分类讨论,去掉绝对值符号,化为分段函数,即可求得函数f(x)的值域;
(Ⅱ)不等式f(x)+2m-1≥0对于任意的x∈R都成立?1-2m≤f(x)min=-3,解之即可求得m的取值范围.

解答 解:(Ⅰ)∵f(x)=|x-2|-|x-5|=$\left\{\begin{array}{l}{-3,x≤2}\\{2x-7,2<x<5}\\{3,x≥5}\end{array}\right.$,
∴函数f(x)的值域为[-3,3];
(Ⅱ)∵不等式f(x)+2m-1≥0对于任意的x∈R都成立,
∴1-2m≤f(x)min=-3,
∴m≥2.
即m的取值范围为[2,+∞).

点评 本题考查函数恒成立问题,着重考查绝对值不等式的应用,考查分类讨论思想与等价转化思想的综合运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,AB=BC,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=a或2a时,CF⊥平面B1DF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$f(x)=\frac{{p{x^2}+8}}{3x+q}$是奇函数,且$\frac{5}{2}<f(2)<3,p∈Z$,
(1)求实数p,q的值;
(2)判断函数f(x)在(-∞,-2)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是(  )
A.x2=-$\frac{9}{2}$y或y2=$\frac{4}{3}$xB.x2=$\frac{4}{3}$y
C.x2=$\frac{4}{3}$y 或 y2=-$\frac{9}{2}$xD.y2=-$\frac{9}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.点M(2,1)到抛物线y=ax2准线的距离为2,则a的值为(  )
A.$\frac{1}{4}$B.$\frac{1}{12}$C.$\frac{1}{4}$或$-\frac{1}{12}$D.$-\frac{1}{4}$或$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.椭圆$\frac{x^2}{2}+{y^2}=1$两个焦点分别是F1,F2,点P是椭圆上任意一点,则$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的取值范围是(  )
A.[-1,1]B.[-1,0]C.[0,1]D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.从2名女生和5名男生中任选3人参加演讲比赛.设随机变量ξ表示所选3人中女生的人数.
(1)求“所选3人中女生人数ξ≤1”的概率;
(2)求ξ的分布列;
(3)求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将$\sqrt{a}•\root{3}{a}$化成分数指数幂为(  )
A.${a^{\frac{1}{6}}}$B.${a^{\frac{5}{6}}}$C.${a^{\frac{7}{6}}}$D.${a^{\frac{2}{3}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,在三棱锥O-ABC中,三条棱OA,OB,OC两两垂直,且OA>OB>OC,分别经过三条棱OA,OB,OC作一个截面平分三棱锥的体积,截面面积依次为S1,S2,S3,则S1,S2,S3的大小关系为S1>S2>S3

查看答案和解析>>

同步练习册答案