精英家教网 > 高中数学 > 题目详情
10.已知定义在R上的奇函数f(x)在(-∞,-1)上是单调减函数,则f(0),f(-3)+f(2)的大小关系是(  )
A.f(0)<f(-3)+f(2)B.f(0)=f(-3)+f(2)C.f(0)>f(-3)+f(2)D.不确定

分析 根据函数奇偶性和单调性的关系进行转化求解即可.

解答 解:∵定义在R上的奇函数f(x)在(-∞,-1)上是单调减函数,
∴f(0)=0,且f(x)在(1,+∞)为减函数,
则f(-3)+f(2)=f(2)-f(3)>0,
即f(0)<f(-3)+f(2),
故选:A.

点评 本题主要考查函数值的大小比较,根据函数奇偶性和单调性的关系进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系中,圆心坐标均为(2,2)的圆Ⅰ、圆Ⅱ、圆Ⅲ半径分别为4,2,1,直线y=$\frac{3}{4}$x+3与圆Ⅰ交于点A,B,点C在圆Ⅰ上,满足线段CA和线段CB与圆Ⅱ均有公共点,点P是圆Ⅲ上任意一点,则△APB与△APC面积之比的最大值为$\frac{3+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设命题A和命题B都含有同一个变量m,其中命题A成立时求得变量m的范围为集合P,命题B成立时求得变量m的范围为集合Q.如果要求“命题A成立是命题B成立的必要非充分条件”时,则集合P和集合Q的关系为Q?P.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系中,以坐标原点为极点,x轴为正半轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ-2sinθ,直线l的参数方程为$\left\{\begin{array}{l}{x=-t}\\{y=\frac{1}{2}+at}\end{array}\right.$(t为参数,a为常数).
(1)求直线l普通方程与圆C的直角坐标方程;
(2)若直线l分圆C所得的两弧长度之比为1:2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.用数学归纳法证明斐波拉契数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线过点(-1,2),则C的离心率为(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=2x的反函数为g(x).h(x)=log4(3x+1),
(1)若g(x+1)≥h(x),求x的取值范围D;
(2)令H(x)=h(x)-$\frac{1}{2}$g(x+1),当x∈D,求H(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC的三内角A,B,C,的对边分别为a,b,c且b2=ac.
(1)若cosB=$\frac{\sqrt{6}}{3}$,求$\frac{1}{tanA}$+$\frac{1}{tanC}$的值;
(2)若b=2,△ABC的面积等于$\sqrt{3}$,求a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C:x2+y2+2x-4y+3=0.
(1)直线l过点(-2,0)且被圆C截得的弦长为2,求直线l的方程;
(2)从直线2x-4y+3=0上一点P向圆引一条切线,切点为M,求|PM|的最小值.

查看答案和解析>>

同步练习册答案