精英家教网 > 高中数学 > 题目详情

【题目】某市一个社区微信群“步行者”有成员100人,其中男性70人,女性30人,现统计他们平均每天步行的时间,得到频率分布直方图,如图所示:

若规定平均每天步行时间不少于2小时的成员为“步行健将”,低于2小时的成员为“非步行健将”.已知“步行健将”中女性占.

(1)填写下面列联表,并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“是否为‘步行健将’与性别有关”;

(2)现从“步行健将”中随机选派2人参加全市业余步行比赛,求2人中男性的人数的分布列及数学期望.

参考公式:,其中.

【答案】(1)见解析;(2)见解析

【解析】分析:(1)根据直方图完成列联表,利用公式求得与邻界值比较,即可得到结论;(2)的可能取值为利用组合知识根据古典概型概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.

详解(1)据频率分布直方图,“步行健将”的人数为

其中女性有7人,填写表格如下:

故在犯错误的概率不超过0.05的前提下不能认为“是否为‘步行健将’与性别有关”.

(2)依题意知的可能取值为0,1,2,所以

分布列为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】养正中学新校区内有一块以O为圆心,R(单位:米)为半径的半圆形荒地(如图),校总务处计划对其开发利用,其中弓形BCD区域(阴影部分)用于种植观赏植物,△OBD区域用于种植花卉出售,其余区域用于种植草皮出售。已知种植观赏植物的成本是每平方米20元,种植花卉的利润是每平方米80元,种植草皮的利润是每平方米30元。

1)设(单位:弧度),用表示弓形BCD的面积

2)如果该校总务处邀请你规划这块土地。如何设计的大小才能使总利润最大?并求出该最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在 △ABC 中,设 a,b,c 分别是角 A,B,C 的对边,已知向量 = (a,sinC-sinB),= (b + c,sinA + sinB),且

(1) 求角 C 的大小

(2) 若 c = 3, 求 △ABC 的周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点O为坐标原点,直线l经过抛物线C:y2=4x的焦点F.
(Ⅰ)若点O到直线l的距离为 , 求直线l的方程;
(Ⅱ)设点A是直线l与抛物线C在第一象限的交点.点B是以点F为圆心,|FA|为半径的圆与x轴负半轴的交点.试判断直线AB与抛物线C的位置关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}的各项均为正数,且a2=2,a4=
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了普及环保知识,增强环保意识,某大学从理工类专业的班和文史类专业的班各抽取名同学参加环保知识测试,统计得到成绩与专业的列联表:( )

优秀

非优秀

总计

14

6

20

7

13

20

总计

21

19

40

附:参考公式及数据:

(1)统计量:,().

(2)独立性检验的临界值表:

0.050

0.010

3.841

6.635

则下列说法正确的是

A. 的把握认为环保知识测试成绩与专业有关

B. 的把握认为环保知识测试成绩与专业无关

C. 的把握认为环保知识测试成绩与专业有关

D. 的把握认为环保知识测试成绩与专业无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平行四边形ABCD的三个顶点的坐标为

(1)求平行四边形ABCD的顶点D的坐标;

(2)求四边形ABCD的面积

(3)求的平分线所在直线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数x,y满足ax<ay(0<a<1),则下列关系式恒成立的是( )
A.
B.ln(x2+1)>ln(y2+1)
C.sinx>siny
D.x3>y3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在一个周期内的图像如图所示.

(I)求函数的解析式;

(II)设,且方程有两个不同的实数根,求实数的取值范围以及这两个根的和.

查看答案和解析>>

同步练习册答案