精英家教网 > 高中数学 > 题目详情
5.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(0,-2).
(1)当k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为120°时,求k的值;
(2)问:是否存在实数k使得k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$垂直?请给出理由.

分析 (1)由已知向量的坐标求出k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$的坐标,代入数量积求夹角公式求得k值;
(2)由向量垂直的坐标表示列式,求得使k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$垂直的k不存在.

解答 解:(1)由$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(0,-2),得
k$\overrightarrow{a}$-$\overrightarrow{b}$=(k,k+2),$\overrightarrow{a}$+$\overrightarrow{b}$=(1,-1),
∵k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为120°,
∴cos120°=$-\frac{1}{2}$=$\frac{(k\overrightarrow{a}-\overrightarrow{b})•(\overrightarrow{a}+\overrightarrow{b})}{|k\overrightarrow{a}-\overrightarrow{b}|•|\overrightarrow{a}+\overrightarrow{b}|}$=$\frac{-2}{\sqrt{{k}^{2}+(k+2)^{2}}•\sqrt{2}}$,
解得:k=-1$±\sqrt{3}$;
(2)若k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$垂直,则k-(k+2)=0,此方程无解,
故不存在实数k,使得k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$垂直.

点评 本题考查平面向量的数量积运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知x,y∈R且x,y满足方程x2+4y2=1,试求f(x,y)=3x+4y的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线y=x-b与曲线C:y=$\sqrt{1-{x}^{2}}$-1有唯一交点,则b的取值范围是(  )
A.{-$\sqrt{2}$-1,$\sqrt{2}$-1}B.{-$\sqrt{2}$+1,$\sqrt{2}$+1}C.[-2,0]D.(0,2]∪{1-$\sqrt{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若0<x<1,则x(1-2x)的最大值为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.cos(8π-α)=$\frac{\sqrt{5}}{3}$,α∈[-$\frac{π}{2}$,0],则sin(11π+α)为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)的图象是由函数g(x)=sinxcosx的图象上点的纵坐标不变,横坐标缩小为原来的$\frac{1}{2}$,再整体向右平移$\frac{π}{12}$个单位得到的.
(1)写出函数f(x)的解析式,并求它的最小正周期;
(2)求函数f(x)在[0,$\frac{π}{4}$]上最大值与最小值,及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列等式中正确的个数是(  )
①(-2)(3$\overrightarrow{a}$)=-6$\overrightarrow{a}$;②($\overrightarrow{a}$+3$\overrightarrow{b}$)+(-$\overrightarrow{a}$-3$\overrightarrow{b}$)=0;③($\overrightarrow{a}$+$\overrightarrow{b}$)-3($\overrightarrow{b}$-2$\overrightarrow{a}$)=8$\overrightarrow{a}$-$\overrightarrow{b}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,且3Sn=4an-4(n∈N+).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设cn=log2a1+log2a2+…+log2an,Tn=$\frac{1}{{c}_{1}}$+$\frac{1}{{c}_{2}}$+…+$\frac{1}{{c}_{n}}$,求使Tn>$\frac{λ}{n+2}$对任意n∈N+恒成立的实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点A(5,4),B(-1,-5),且2$\overrightarrow{AC}$=3$\overrightarrow{CB}$,求点C的坐标.

查看答案和解析>>

同步练习册答案