精英家教网 > 高中数学 > 题目详情
已知函数,且函数f(x)与g(x)的图象关于直线y=x对称,又,g(1)=0.
(Ⅰ)求f(x)的值域;
(Ⅱ)是否存在实数m,使得命题p:f(m2-m)<f(3m-4)和满足复合命题p且q为真命题?若存在,求出m的取值范围;若不存在,说明理由.
【答案】分析:(I)依题意函数f(x)与g(x)的图象关于直线y=x对称得:f(x)与g(x)互为反函数,利用反函数图象间的对称性列出关于a,b方程求出它们的值,最后利用f(x)在[0,+∞)上是减函数即可求得f(x)的值域;
(II)对于存在性问题,可先假设存在,由(Ⅰ)知f(x)是[0,+∞)上的减函数,g(x)是(0,1]上的减函数,欲使得复合命题p且q为真命题,必须p且q都为真命题,据此列出不等关系,解之,如果不出现矛盾则存在,否则不存在.
解答:解:(Ⅰ)依题意f(x)与g(x)互为反函数,
由g(1)=0得f(0)=1∴
(3分)
故f(x)在[0,+∞)上是减函数∴
即f(x)的值域为(0,1].(6分)
(Ⅱ)由(Ⅰ)知f(x)是[0,+∞)上的减函数,g(x)是(0,1]上的减函数,
(9分)
解得
因此,存在实数m,使得命题p且q为真命题,且m的取值范围为:.(12分)
点评:本题主要考查了反函数、复合命题的真假函数的值域及存在性问题.求反函数,一般应分以下步骤:(1)由已知解析式y=f(x)反求出x=Ф(y);(2)交换x=Ф(y)中x、y的位置;(3)求出反函数的定义域(一般可通过求原函数的值域的方法求反函数的定义域).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例4、已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.
①证明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+b(a>0,b∈R),x∈R
(1)若-1为f(x)=0的一个根,且函数f(x)的值域为[-4,+∞),求f(x)的解析式;
(2)在(1)的条件下,当x∈[-2,2]时,h(x)=f(x)-kx是单调函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
ax3+  
1
2
bx2+cx

(1)若函数f(x)有三个零点x1,x2,x3,且x1+x2+x3=
9
2
,x
1
x3=-12
,且a>0,求函数f(x)的单调区间;
(2)若f(1)=-
1
2
a
,且3a>2c>2b,试问:导函数f(x)在区间(0,2)内是否有零点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区一模)已知函数f(x)的定义域是D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)在[0,1]上为非减函数,且满足以下三个条件:①f(0)=0;  ②f(
x
5
)=
1
2
f(x);  ③f(1-x)=1-f(x).则f(
4
5
)=
1
2
1
2
,f(
1
2013
)=
1
32
1
32

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区一模)已知函数f(x)的定义域是D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)在[0,1]上为非减函数,且满足以下三个条件:
①f(0)=0;  
f(
x
5
)=
1
2
f(x)
;  
③f(1-x)=1-f(x).
f(
4
5
)
=
1
2
1
2
f(
1
12
)
=
1
4
1
4

查看答案和解析>>

同步练习册答案