【题目】如图,在四棱锥中,底面为正方形,平面,,为上异于的点.
(1)求证:平面平面;
(2)当与平面所成角为时,求的长;
(3)当时,求二面角的余弦值.
【答案】(1)证明见解析;(2);(3).
【解析】
(1)由为正方形,可得.又平面,得.利用线面垂直的判断可得平面.从而得到平面平面;
(2)以为原点建立空间直角坐标系.可得,0,,,2,,,2,,,0,,,0,.设是上一点,且,.由此可得点,,.即,,.利用与平面所成角为列式求得值,进一步求得的长;
(3)结合(2)分别求出平面与平面的一个法向量,由两法向量所成角的余弦值可得二面角的余弦值.
证明:(1)为正方形,.
平面,平面,
.
,平面,平面
平面.
又平面,
平面平面;
解:(2)平面,平面,平面,
,.
底面为正方形,.
如图以为原点建立空间直角坐标系.
则, ,, , ,
.,
设是上一点,且,.
因此点,
,
,
,
即
,此时;
解:(3),,
平面.
为平面的法向量,
,.
设平面的法向量为,
由,取,得.
,,
设与的夹角为,.
由图可知二面角为锐角,
二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】设圆的圆心为,直线过点且与轴不重合,直线交圆于,两点,过点作的平行线交于点.
(1)证明为定值,并写出点的轨迹方程;
(2)设点的轨迹为曲线,直线交于,两点,过点且与直线垂直的直线与圆交于,两点,求四边形面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数有极值,且导函数的极值点是的零点,给出命题:①;②若,则存在,使得;③若有两个极值点,,则;④若,且是曲线,的一条切线,则的取值范围是;则以上命题正确序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与抛物线:交于,两点,且的面积为16(为坐标原点).
(1)求的方程.
(2)直线经过的焦点且不与轴垂直,与交于,两点,若线段的垂直平分线与轴交于点,试问在轴上是否存在点,使为定值?若存在,求该定值及的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若一个三位数的个位数字大于十位数字,十位数字大于百位数字,我们就称这个三位数为“递增三位数”.现从所有的递增三位数中随机抽取一个,则其三个数字依次成等差数列的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:
.
设,由于的值很小,因此在近似计算中,则r的近似值为
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com