精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形ABCD为菱形,ACEF为平行四边形,且平面ACEF⊥平面ABCD,设BDAC相交于点GHFG的中点.

(1)证明:BDCH

(2)若AB=BD=2,AE=CH=,求三棱锥F-BDC的体积.

【答案】(1)详见解析;(2).

【解析】

1)由菱形性质得BDAC,由面面垂直的性质得BD⊥面ACFE,由此能证明BDCH

2)由已知得∠GCF120°,GF3,由线面垂直得BDGF,从而SBDF3,由CHBDCHGF,得CH⊥平面BDF,由VFBDCVCBDF,利用等积法能求出三棱锥FBDC的体积.

1)证明:四边形为菱形,

平面

2)解:在中,

平面

平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示:在五面体ABCDEF中,四边形EDCF是正方形,AD=DE=1,∠ADE=90°,∠ADC=∠DCB=120°.

(Ⅰ)求证:平面ABCD⊥平面EDCF;

(Ⅱ)求三棱锥A-BDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱中,,过的截面与面交于

1)求证:

2)若截面过点,求证:

3)在(2)的条件下,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是平行四边形,的中点,.

(1)求证:平面

(2)若,点在侧棱上,且,二面角的大小为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

讨论函数的单调性;

,对任意的恒成立,求整数的最大值;

求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】即将于年夏季毕业的某大学生准备到贵州非私营单位求职,为了了解工资待遇情况,他在贵州省统计局的官网上,查询到年到年非私营单位在岗职工的年平均工资近似值(单位:万元),如下表:

年份

序号

年平均工资

(1)请根据上表的数据,利用线性回归模型拟合思想,求关于的线性回归方程的计算结果根据四舍五入精确到小数点后第二位);

(2)如果毕业生对年平均工资的期望值为8.5万元,请利用(1)的结论,预测年的非私营单位在岗职工的年平均工资(单位:万元。计算结果根据四舍五入精确到小数点后第二位),并判断年平均工资能否达到他的期望.

参考数据:

附:对于一组具有线性相关的数据:

其回归直线的斜率和截距的最小二乘法估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查高中生的数学成绩与学生自主学习时间之间的相关关系,新苗中学数学教师对新入学的名学生进行了跟踪调查,其中每周自主做数学题的时间不少于小时的有人,余下的人中,在高三模拟考试中数学成绩不足分的占,统计成绩后,得到如下的列联表:

分数大于等于

分数不足

合计

周做题时间不少于小时

4

19

周做题时间不足小时

合计

45

)请完成上面的列联表,并判断能否在犯错误的概率不超过的前提下认为“高中生的数学成绩与学生自主学习时间有关”.

)(i)按照分层抽样的方法,在上述样本中,从分数大于等于分和分数不足分的两组学生中抽取名学生,设抽到的不足分且周做题时间不足小时的人数为,求的分布列(概率用组合数算式表示).

(ii)若将频率视为概率,从全校大于等于分的学生中随机抽取人,求这些人中周做题时间不少于小时的人数的期望和方差.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是由容量为100的样本得到的频率分布直方图.其中前4组的频率成等比数列,后6组的频数成等差数列,设最大频率为a,在之间的数据个数为b,则ab的值分别为(

A.78

B.83

C.78

D.83

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC,A,B,C所对的边分别为a,b,c.满足2acosC+bcosC+ccosB=0.

()求角C的大小;

()a=2,ABC的面积为,求C的大小。

查看答案和解析>>

同步练习册答案