精英家教网 > 高中数学 > 题目详情

【题目】定义在上的函数,其导函数为,且,若当时,,则

A. B.

C. D.

【答案】B

【解析】

根据题意,利用函数的奇偶性和导数,求得单调递增,在单调递减.

解法一:求得,利用单调性,即可比较;

解法二:由条件可得单调递减,在单调递增,且关于对称,,利用单调性,即可比较,得到答案.

由题意,函数满足,即函数为奇函数,图象关于原点对称,

由导数的几何意义可知,函数的图像关于轴对称,所以为偶函数,

所以

时,,当时,

所以单调递增,在单调递减.

解法一:

因为,所以即,所以A错;

因为,所以即,所以B对;

无法确定符号,所以C D错.故选B

解法二:由条件可得单调递减,在单调递增,且关于对称.

因为,且

所以

无法确定符号,所以C D错.故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,现用一种新配方做试验,生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:

质量指标值

频数

6

26

38

22

8

(1)将答题卡上列出的这些数据的频率分布表填写完整,并补齐频率分布直方图;

(2)估计这种产品质量指标值的平均值(同一组中的数据用该组区间的中点值作代表)与中位数(结果精确到0.1).

质量指标值分组

频数

频率

6

0.06

合计

100

1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

1)求直方图中的值;

2)求月平均用电量的众数和中位数;

3)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,且下列三个关系:中有且只有一个正确,则函数的值域是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象与直线分别交于两点,则(

A.的最小值为

B.使得曲线处的切线平行于曲线处的切线

C.函数至少存在一个零点

D.使得曲线在点处的切线也是曲线的切线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年,依托用户碎片化时间的娱乐需求、分享需求以及视频态的信息负载力,短视频快速崛起;与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.

某读书APP抽样调查了非一线城市M和一线城市N100名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于60分钟的用户记为活跃用户

1)请填写以下列联表,并判断是否有995%的把握认为用户活跃与否与所在城市有关?

活跃用户

不活跃用户

合计

城市M

城市N

合计

2)以频率估计概率,从城市M中任选2名用户,从城市N中任选1名用户,设这3名用户中活跃用户的人数为,求的分布列和数学期望.

3)该读书APP还统计了20184个季度的用户使用时长y(单位:百万小时),发现y与季度()线性相关,得到回归直线为,已知这4个季度的用户平均使用时长为12.3百万小时,试以此回归方程估计2019年第一季度()该读书APP用户使用时长约为多少百万小时.

附:,其中

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线上动点与定点的距离和它到定直线的距离的比是常数.若过的动直线与曲线相交于两点.

(1)判断曲线的名称并写出它的标准方程;

(2)是否存在与点不同的定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,点,动点满足,点为线段的中点,抛物线上点的纵坐标为.

(1)求动点的轨迹曲线的标准方程及抛物线的标准方程;

(2)若抛物线的准线上一点满足,试判断是否为定值,若是,求这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用一根长为分米的铁丝制作一个长方体框架(12条棱组成),使得长方体框架的底面长是宽的倍.在制作时铁丝恰好全部用完且损耗忽略不计.现设该框架的底面宽是分米,表示该长方体框架所占的空间体积(即长方体的体积).

(1)试求函数的解析式及其定义域;

(2)当该框架的底面宽取何值时,长方体框架所占的空间体积最大,并求出最大值.

查看答案和解析>>

同步练习册答案