精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=2时,求不等式f(x)<g(x)的解集;
(2)设a> ,且当x∈[ ,a]时,f(x)≤g(x),求a的取值范围.

【答案】
(1)解:由|2x﹣1|+|2x+2|<x+3,得:

得x∈

得0<x≤

综上:不等式f(x)<g(x)的解集为


(2)解:∵a> ,x∈[ ,a],

∴f(x)=4x+a﹣1

由f(x)≤g(x)得:3x≤4﹣a,即x≤

依题意:[ ,a](﹣∞, ]

∴a≤ 即a≤1

∴a的取值范围是( ,1]


【解析】(1)对x分类讨论,去掉绝对值符号解出即可得出.(2)当a> ,x∈[ ,a],时,f(x)=4x+a﹣1,不等式f(x)≤g(x)化为3x≤4﹣a,化简利用a的取值范围即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等比数列{}的前n项和为,且满足2+m(m∈R).

(Ⅰ)求数列{}的通项公式;

(Ⅱ)若数列{}满足,求数列{}的前n项和

【答案】(Ⅰ)(Ⅱ)

【解析】

()法一:由前n项和与数列通项公式的关系可得数列的通项公式为

法二:由题意可得,则据此可得数列的通项公式为.

Ⅱ)由(Ⅰ)可得裂项求和可得.

()法一:

时,,即

,当时符合上式,所以通项公式为.

法二:

从而有

所以等比数列公比,首项,因此通项公式为.

Ⅱ)由(Ⅰ)可得

.

【点睛】

本题主要考查数列前n项和与通项公式的关系,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力.

型】解答
束】
18

【题目】四棱锥S-ABCD的底面ABCD为直角梯形,AB∥CD,AB⊥BC,AB=2BC=2CD=2,△SAD为正三角形.

(Ⅰ)点M为棱AB上一点,若BC∥平面SDM,AM=λAB,求实数λ的值;

(Ⅱ)若BC⊥SD,求二面角A-SB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为(其中α为参数),曲线C2:(x﹣1)2+y2=1,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.

(1)求曲线C1的普通方程和曲线C2的极坐标方程;

(2)若射线θ=(ρ>0)与曲线C1,C2分别交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G为AD中点,F是CE的中点.

(1)证明:BF∥平面ACD;
(2)求平面BCE与平面ACD所成锐二面角的大小;
(3)求点G到平面BCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:

列联表算得参照附表,得到的正确结论是(  ).

A. 在犯错误的概率不超过0.01的前提下认为爱好该项运动与性别有关

B. 在犯错误的概率不超过0.01的前提下认为爱好该项运动与性别无关

C. 在犯错误的概率不超过0.001的前提下,认为爱好该项运动与性别有关

D. 在犯错误的概率不超过0.001的前提下,认为爱好该项运动与性别无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a>0)的导函数y=f′(x)的两个零点为0和3.
(1)求函数f(x)的单调递增区间;
(2)若函数f(x)的极大值为 ,求函数f(x)在区间[0,5]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:①命题,则的逆否命题为假命题:

②命题,则的否命题是,则”;

③若为真命题,为假命题,则为真命题,为假命题;

④函数有极值的充要条件是 .

其中正确的个数有(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处都取得极值.

(1)求的值及函数的单调区间;

(2)若对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是菱形, 交于点 底面,点中点, .

(1)求直线所成角的余弦值;

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案