【题目】在数列{an}中,a1=3,且对任意的正整数n,都有an+1=λan+2×3n,其中常数λ>0.
(1)设bn.当λ=3时,求数列{bn}的通项公式;
(2)若λ≠1且λ≠3,设cn=an,证明:数列{cn}为等比数列;
(3)当λ=4时,对任意的n∈N*,都有an≥M,求实数M的最大值.
【答案】(1);(2)证明见解析(3)最大值为3.
【解析】
(1)当可得,等式两边同除,进而根据等差数列定义以及通项公式求解即可;
(2)将代入中,整理后得递推关系,再根据等比数列定义即可证明;
(3)当时可得,等式两边同除并设,则,利用累加法求得,即可求得,再判断数列的单调性,进而求解即可.
(1)当λ=3时,有an+1=3an+2×3n,
∴,
,则,
又∵,∴数列{bn}是首相为1,公差为的等差数列,
∴
(2)证明:当λ>0且λ≠1且λ≠3时,
,
又∵,
∴数列是首项为,公比为λ的等比数列
(3)当λ=4时,an+1=4an+2×3n,
∴,
设pn,∴,
∴,
,
,
,
∴,
以上各式累加得:,
又∵,
∴,
∴,
∴,
,显然数列{an}是递增数列,
∴最小项为a1=3,
∵对任意的n∈N*,都有an≥M,∴a1≥M,即M≤3,
∴实数M的最大值为3.
科目:高中数学 来源: 题型:
【题目】已知定点,,直线、相交于点,且它们的斜率之积为,记动点的轨迹为曲线。
(1)求曲线的方程;
(2)过点的直线与曲线交于、两点,是否存在定点,使得直线与斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知圆C过点P(1,1),且与圆M:关于直线对称.
(1)求圆C的方程:
(2)设Q为圆C上的一个动点,求最小值;
(3)过点P作两条相异直线分别与圆C交与A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP与直线AB是否平行?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数与的图象关于点对称.
(1)求函数的解析式;
(2)若函数有两个不同零点,求实数的取值范围;
(3)若函数在上是单调减函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】曲线C的参数方程为(为参数,),以原点为极点,x轴正半轴为极轴建立极坐标系,直线与直线交于点P,动点Q在射线OP上,且满足|OQ||OP|=8.
(1)求曲线C的普通方程及动点Q的轨迹E的极坐标方程;
(2)曲线E与曲线C的一条渐近线交于P1,P2两点,且|P1P2|=2,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面是菱形,底面,分别是的中点,,,.
(I)证明:;
(II)求直线与平面所成角的正弦值;
(III)在边上是否存在点,使与所成角的余弦值为,若存在,确定点位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)当时,求曲线在处的切线方程;
(2)当时,求函数的单调区间;
(3)在(2)的条件下,设函数,若对于,,使成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com