精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左顶点为A,右焦点为F,过点F的直线交椭圆于BC两点.

(1)求该椭圆的离心率;

(2)设直线ABAC分别与直线x=4交于点MN,问:x轴上是否存在定点P使得MPNP?若存在,求出点P的坐标;若不存在,说明理由.

【答案】(1)(2)存在定点P(1,0)或P(7,0),

【解析】试题分析:(1)由椭圆方程分别求出a,b,c的值,求出离心率;(2)假设在x轴上存在点p,设直线BC的方程为B(x1y1),C(x2y2),

联立直线和椭圆方程,利用韦达定理求出的表达式,求出M,N的坐标,由MPNP,求出P点的坐标,即得出定点。

试题解析: (1)由椭圆方程可得a=2,b,从而椭圆的半焦距c=1.

所以椭圆的离心率为e.

(2)依题意,直线BC的斜率不为0,

设其方程为xty+1.

将其代入=1,整理得(4+3t2)y2+6ty-9=0.

B(x1y1),C(x2y2),

所以y1y2y1y2.

易知直线AB的方程是y (x+2),

从而可得M(4,),同理可得N(4,).

假设x轴上存在定点P(p,0)使得MPNP,则有·=0.

所以(p-4)2=0.

x1ty1+1,x2ty2+1代入上式,整理得

(p-4)2=0,

所以(p-4)2=0,

即(p-4)2-9=0,解得p=1或p=7.

所以x轴上存在定点P(1,0)或P(7,0),使得MPNP.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在(﹣∞,0)∪(0,+∞)上的奇函数f(x)满足f(2)=0,且在(﹣∞,0)上是增函数;又定义行列式=a1a4﹣a2a3; 函数g(θ)=(其中0≤θ≤).
(1)证明:函数f(x)在(0,+∞)上也是增函数;
(2)若函数g(θ)的最大值为4,求m的值;
(3)若记集合M={m|任意的0≤θ≤ , g(θ)>0},N={m|任意的0≤θ≤ , f[g(θ)]<0},求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0
(1)求证:f(x)是奇函数;
(2)若f(1)= ,试求f(x)在区间[﹣2,6]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解不等式:
(1)|x﹣2|+|2x﹣3|<4;
(2) ≤x.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若是函数的极值点,1为函数的一个零点,求函数上的最小值.

(2)当时,函数轴在内有两个不同的交点,求的取值范围.(其中是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn,且S4=4S2a2n=2an+1.

(1)求数列{an}的通项公式;

(2)设数列{bn}的前n项和为Tn,且,令cnb2n(nN*),求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为.

1求数列的通项公式;

2,记数列的前项和.若对 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数, ).以原点为极点,以轴正半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.

(Ⅰ)设为曲线上任意一点,求的取值范围;

(Ⅱ)若直线与曲线交于两点 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,有两个独立的转盘()、().两个图中三个扇形区域的圆心角分别为.用这两个转盘进行玩游戏,规则是:依次随机转动两个转盘再随机停下(指针固定不会动,当指针恰好落在分界线时,则这次结果无效,重新开始),记转盘()指针所对的数为,转盘()指针所对的数为,(),求下列概率:

(1)

(2)

查看答案和解析>>

同步练习册答案