精英家教网 > 高中数学 > 题目详情

【题目】某市积极倡导学生参与绿色环保活动其中代号为环保卫士12369的绿色环保活动小组对2014年1月2014年12月一年内空气质量指数进行监测下表是在这一年随机抽取的100天的统计结果:

指数API

[050]

50100]

100150]

150200]

200250]

250300]

>300

空气质量

轻微污染

轻度污染

中度污染

中重度污染

重度污染

天数

4

13

18

30

9

11

15

1若某市某企业每天由空气污染造成的经济损失单位:元与空气质量指数记为的关系为:在这一年内随机抽取一天估计该天经济损失元的概率;

2若本次抽取的样本数据有30天是在供暖季节其中有8天为重度污染完成列联表并判断是否有的把握认为某市本年度空气重度污染与供暖有关?

非重度污染

重度污染

合计

供暖季

非供暖季节

合计

100

下面临界值表供参考

2706

015

010

005

0025

0010

0005

0001

2072

3841

5024

6635

7879

10828

参考公式:其中

【答案】12有95%的把握认为市本年度空气重度污染与供暖有关

【解析】

试题分析:1由题意知只可能是第二段函数在此范围类从而得到的范围进而通过频数统计表得到所对应的天数利用古典概型概率公式得其概率;2列联表的完成只要找到各个数据所对应的含义不难完成然后利用独立性检验相关系数看相关性大小

试题解析:1设“在本年内随机抽取一天该天经济损失元”为事件

频数为39

2根据以上数据得到如表:

非重度污染

重度污染

合计

供暖季

22

8

30

非供暖季

63

7

70

合计

85

15

100

的观测值

所以有95%的把握认为市本年度空气重度污染与供暖有关

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知的顶点 边上的中线所在直线方程为 边上的高所在直线方程为. 

(1)求点的坐标;

(2)求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共个,生产一个卫兵需分钟,生产一个骑兵需分钟,生产一个伞兵需分钟,已知总生产时间不超过小时,若生产一个卫兵可获利润元,生产一个骑兵可获利润元,生产一个伞兵可获利润元.

(1)用每天生产的卫兵个数与骑兵个数表示每天的利润(元);

(2)怎么分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 在△中, 点边上, .

(Ⅰ)求

(Ⅱ)若△的面积是, 求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在四棱锥中,底面是菱形, 平面,点的中点,且.

(1)证明:

(2)求三棱锥的体积;

(3)在线段上是否存在一点,使得平面;若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|4≤2x<128},B={x|1<x≤6},M={x|a﹣3<x<a+3}.
(1)求A∩UB;
(2)若M∪UB=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市两所高中分别组织部分学生参加了“七五普法网络知识大赛”,现从这两所学校的参赛学生中分别随机抽取30名学生的成绩(百分制)作为样本,得到样本数据的茎叶图如图所示.

(Ⅰ)若乙校每位学生被抽取的概率为0.15,求乙校参赛学生总人数;

(Ⅱ)根据茎叶图,从平均水平与波动情况两个方面分析甲、乙两校参赛学生成绩(不要求计算);

(Ⅲ)从样本成绩低于60分的学生中随机抽取3人,求3人不在同一学校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究所计划利用神七宇宙飞船进行新产品搭载实验,计划搭载新产品,该所要根据该产品的研制成本、产品重量、搭载实验费用、和预计产生收益来决定具体安排.通过调查,有关数据如下表:


产品A()

产品B()


研制成本、搭载费用之和(万元)

20

30

计划最大资金额300万元

产品重量(千克)

10

5

最大搭载重量110千克

预计收益(万元)

80

60


如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,已知中心在原点,焦点在x轴上的双曲线C的离心率为,且双曲线C与斜率为2的直线l相交,且其中一个交点为P(﹣3,0).

(1)求双曲线C的方程及它的渐近线方程;

(2)求以直线l与坐标轴的交点为焦点的抛物线的标准方程.

查看答案和解析>>

同步练习册答案