精英家教网 > 高中数学 > 题目详情

【题目】已知某观光海域AB段的长度为3百公里,一超级快艇在AB段航行,经过多次试验得到其每小时航行费用Q(单位:万元)与速度v(单位:百公里/小时)(0≤v≤3)的以下数据:

0

1

2

3

0

0.7

1.6

3.3

为描述该超级快艇每小时航行费用Q与速度v的关系,现有以下三种函数模型供选择:Qav3bv2cvQ=0.5vaQklogavb

(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;

(2)该超级快艇应以多大速度航行才能使AB段的航行费用最少?并求出最少航行费用.

【答案】(1)选择函数模型,函数解析式为;(2)以1百公里/小时航行时可使AB段的航行费用最少,且最少航行费用为2.1万元.

【解析】

1)对题中所给的三个函数解析式进行分析,对应其性质,结合题中所给的条件,作出正确的选择,之后利用待定系数法求得解析式,得出结果;

2)根据题意,列出函数解析式,之后应用配方法求得最值,得到结果.

(1)若选择函数模型,则该函数在上为单调减函数,

这与试验数据相矛盾,所以不选择该函数模型.

若选择函数模型,须,这与试验数据在时有意义矛盾,

所以不选择该函数模型.

从而只能选择函数模型,由试验数据得,

,即,解得

故所求函数解析式为:

(2)设超级快艇在AB段的航行费用为y(万元),

则所需时间为(小时),其中

结合(1)知,

所以当时,

答:当该超级快艇以1百公里/小时航行时可使AB段的航行费用最少,且最少航行费用为2.1万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】p:关于x的方程无解,q

1)若时,“”为真命题,“”为假命题,求实数a的取值范围.

2)当命题“若p,则q”为真命题,“若q,则p”为假命题时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求不等式的解集;

2)若不等式的解集包含[–11],求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20171018日至1024日,中国共产党第十九次全国代表大会简称党的“十九大”在北京召开一段时间后,某单位就“十九大”精神的领会程度随机抽取100名员工进行问卷调查,调查问卷共有20个问题,每个问题5分,调查结束后,发现这100名员工的成绩都在内,按成绩分成5组:第1,第2,第3,第4,第5,绘制成如图所示的频率分布直方图,已知甲、乙、丙分别在第3,4,5组,现在用分层抽样的方法在第3,4,5组共选取6人对“十九大”精神作深入学习.

求这100人的平均得分同一组数据用该区间的中点值作代表

求第3,4,5组分别选取的作深入学习的人数;

若甲、乙、丙都被选取对“十九大”精神作深入学习,之后要从这6人随机选取2人再全面考查他们对“十九大”精神的领会程度,求甲、乙、丙这3人至多有一人被选取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且,圆的方程是.

1)求双曲线的方程;

2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为,求的值;

3)过圆上任意一点作圆的切线交双曲线两点,中点为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数满足以下4个条件.

①函数的定义域是,且其图象是一条连续不断的曲线;

②函数不是单调函数;

③函数是偶函数;

④函数恰有2个零点.

1)写出函数的一个解析式;

2)画出所写函数的解析式的简图;

3)证明满足结论③及④.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的部分图象如图所示,分别是图象的最高点与相邻的最低点,且为坐标原点.

(1)求函数的解析式;

(2)将函数的图象向左平移1个单位后得到函数的图象,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的图象的相邻两条对称轴之间的距离为4,且有一个零点为.

(1)求函数的解析式;

(2)若,且,求的值;

(3)若上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,已知,对于任意的,有.

(1)求数列的通项公式.

(2)若数列满足,求数列的通项公式.

(3)设,是否存在实数,当时,恒成立?若存在,求实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案