精英家教网 > 高中数学 > 题目详情

【题目】某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.
(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;
(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为 ,答对文科题的概率均为 ,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分X的分布列与数学期望E(X).

【答案】
(1)解:记“该考生在第一次抽到理科题”为事件A,“该考生第二次和第三次均抽到文科题”为事件B,则P(A)= ,P(AB)= .∴该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率为P(B|A)=
(2)解:X的可能取值为:0,10,20,30,

则P(X=0)= = ,P(X=10)= + =

P(X=20)= =

P(X=30)=1﹣ = .∴X的分布列为

X

0

10

20

30

p

∴X的数学期望为EX=0× +10× +20× +30× =


【解析】(1)利用条件概率公式,即可求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;(2)确定X的可能取值,利用概率公式即可得到总分X的分布列,代入期望公式即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设点M到坐标原点的距离和它到直线l:x=﹣m(m>0)的距离之比是一个常数
(Ⅰ)求点M的轨迹;
(Ⅱ)若m=1时得到的曲线是C,将曲线C向左平移一个单位长度后得到曲线E,过点P(﹣2,0)的直线l1与曲线E交于不同的两点A(x1 , y1),B(x2 , y2),过F(1,0)的直线AF、BF分别交曲线E于点D、Q,设 ,α、β∈R,求α+β的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.命题“若x2=9,则x=±3”的否命题为“若x2=9,则x≠±3”
B.若命题P:?x0∈R, ,则命题?P:?x∈R,
C.设 是两个非零向量,则“ 是“ 夹角为钝角”的必要不充分条件
D.若命题P: ,则¬P:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,离心率为.

(1)求椭圆的标准方程;

2)过椭圆的上顶点作直线交抛物线两点, 为原点.

①求证:

②设分别与椭圆相交于两点,过原点作直线的垂线,垂足为,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx+1(a,b为实数),

(1)f(-1)=0,且对任意实数x均有f(x)0成立,F(x)的表达式;

(2)(1)的条件下,x[-2,2],g(x)=f(x)-kx是单调函数,求实数k的取值范围;

(3)mn<0,m+n>0,a>0,f(x)满足f(-x)=f(x),试比较F(m)+F(n)的值与0的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的图象过点,对任意满足,且最小值是.

(1)求的解析式;

(2)设函数,其中,求在区间上的最小值

(3)若在区间上,函数的图象恒在函数的图象上方,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,AB∥C,AD=DC=CB=1,∠ABC═60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求证:BC⊥平面ACFE;
(2)求二面角A﹣BF﹣C的平面角的余弦值;
(3)若点M在线段EF上运动,设平MAB与平FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的参数方程为 (α为参数,α∈[0,π]),直线l的极坐标方程为
(1)写出曲线C的普通方程和直线l的直角坐标方程;
(2)P为曲线C上任意一点,Q为直线l任意一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是(  )

A. 恰有1件一等品 B. 至少有一件一等品

C. 至多有一件一等品 D. 都不是一等品

查看答案和解析>>

同步练习册答案