精英家教网 > 高中数学 > 题目详情
5.某几何体的三视图如图所示,则其体积为(  )
A.4B.8C.$\frac{4}{3}$D.$\frac{8}{3}$

分析 通过三视图复原的几何体是四棱锥,结合三视图的数据,求出几何体的体积.

解答 解:由题意三视图可知,几何体是四棱锥,底面边长为2的正方形,一条侧棱垂直正方形的一个顶点,长度为2,
所以几何体的体积是:$\frac{1}{3}×2×2×2$=$\frac{8}{3}$.
故选D.

点评 本题是基础题,考查三视图复原几何体的体积的求法,考查计算能力,空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=$\sqrt{3}$|PB|,则点P的轨迹所包围的图形的面积等于$\frac{27π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在建立两个变量y与x的回归模型中,分别选择了四个不同的模型,它们的相关指数如下,其中拟合效果最好的模型是(  )
A.模型1的相关指数R2为0.98B.模型2的相关指数R2为0.80
C.模型3的相关指数R2为0.54D.模型4的相关指数R2为0.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在梯形ABCD中,$\overrightarrow{AB}$=3$\overrightarrow{DC}$,则$\overrightarrow{BC}$等于(  )
A.-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AD}$B.-$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AD}$C.$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$D.-$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和为Sn,且Sn=2an-n.
(Ⅰ)证明数列{an+1}是等比数列,求数列{an}的通项公式;
(Ⅱ)记bn=$\frac{1}{{a}_{n+1}}$+$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=lnx-\frac{1}{2}a{x^2}-2x$
(1)若函数f(x)在定义域内单调递增,求a的取值范围;
(2)若$a=-\frac{1}{2}$,且关于x的方程$f(x)=-\frac{1}{2}x+b$在[1,4]恰有两个不相等的实数根,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.集成电路E由3个不同的电子元件组成,现由于元件老化,3个电子元件能正常工作的概率分别降为$\frac{1}{2}$,$\frac{1}{2}$,$\frac{2}{3}$,且每个电子元件能否正常工作相互独立.若3个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需要费用为100元.
(1)求集成电路E需要维修的概率;
(2)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需费用.求X的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点A(-1,2),B(2,3),若直线l:kx-y-k+1=0与线段AB相交,则实数k的取值范围是(  )
A.(-∞,-$\frac{1}{2}$]∪[2,+∞)B.[{-$\frac{1}{2}$,2}]C.[-2,$\frac{1}{2}$]D.(-∞,-2]∪[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3-3ax+e,g(x)=1-lnx,其中e为自然对数的底数.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线l:x+2y=0垂直,求实数a的值;
(Ⅱ)设函数$F(x)=-x[g(x)+\frac{1}{2}x-2]$,若F(x)在区间(m,m+1)(m∈Z)内存在唯一的极值点,求m的值;
(Ⅲ)用max{m,n}表示m,n中的较大者,记函数h(x)=max{f(x),g(x)}(x>0).若函数h(x)在(0,+∞)上恰有2个零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案