1£®ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=cos¦Á}\\{y=m+sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\frac{\sqrt{5}}{5}t}\\{y=4+\frac{2\sqrt{5}}{5}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
£¨1£©ÇóÇúÏßCÓëÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßCÏཻÓÚP£¬QÁ½µã£¬ÇÒ|PQ|=$\frac{4\sqrt{5}}{5}$£¬ÇóʵÊýmµÄÖµ£®

·ÖÎö £¨1£©ÓÉsin2¦Á+cos2¦Á=1£¬ÄÜÇó³öÇúÏßCµÄÆÕͨ·½³Ì£¬ÏûÈ¥Ö±ÏßlÖеIJÎÊý£¬ÄÜÇó³öÖ±ÏßlµÄÆÕͨ·½³Ì£®£®
£¨2£©Çó³öÔ²ÐÄC£¨0£¬m£©µ½Ö±Ïßl£º2x-y+2=0µÄ¾àÀëd£¬ÔÙÓɹ´¹É¶¨Àí½áºÏÏÒ³¤ÄÜÇó³öm£®

½â´ð ½â£º£¨1£©¡ßÇúÏßCµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=cos¦Á}\\{y=m+sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬
¡àÇúÏßCµÄÆÕͨ·½³Ì£ºx2+£¨y-m£©2=1£¬
¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\frac{\sqrt{5}}{5}t}\\{y=4+\frac{2\sqrt{5}}{5}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
¡àÏûÈ¥²ÎÊý£¬µÃÖ±ÏßlµÄÆÕͨ·½³ÌΪ£º2x-y+2=0£®
£¨2£©¡ßÇúÏßC£ºx2+£¨y-m£©2=1ÊÇÒÔC£¨0£¬m£©ÎªÔ²ÐÄ£¬ÒÔ1Ϊ°ë¾¶µÄÔ²£¬
Ô²ÐÄC£¨0£¬m£©µ½Ö±Ïßl£º2x-y+2=0µÄ¾àÀ룺d=$\frac{|0-m+2|}{\sqrt{4+1}}$=$\frac{\sqrt{5}}{5}$|m-2|£¬
ÓÖÖ±ÏßlÓëÇúÏßCÏཻÓÚP£¬QÁ½µã£¬ÇÒ|PQ|=$\frac{4\sqrt{5}}{5}$£¬
¡à2$\sqrt{1-£¨\frac{\sqrt{5}}{5}|m-2|£©^{2}}$=$\frac{4\sqrt{5}}{5}$
½âµÃm=1»òm=3£®

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì¡¢ÆÕͨ·½³ÌµÄ»¥»¯£¬¿¼²éʵÊýÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÔ²µÄÐÔÖÊ¡¢µãµ½Ö±Ïß¾àÀ빫ʽ¡¢¹´¹É¶¨ÀíµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{{2}^{x}+1£¬x¡Ü0}\\{|lo{g}_{2}x|£¬x£¾0}\end{array}\right.$£¬g£¨x£©=[f£¨x£©]2-af£¨x£©£¬Èôº¯Êýg£¨x£©´æÔÚËĸöÁãµã£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª£¨1£¬2]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªA¡¢BÊǰ뾶ΪRµÄÇòOµÄÇòÃæÉÏÁ½µã£¬¡ÏAOB=¦Á£¬CΪÇòÃæÉϵĶ¯µã£¬ÈôÈýÀâ׶O-ABCµÄÌå»ý×î´ó£¬Ôò¦ÁºÍ×î´óÌå»ý·Ö±ðΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{3}$£¬$\frac{1}{6}$R3B£®$\frac{¦Ð}{3}$£¬$\frac{1}{3}$R3C£®$\frac{¦Ð}{2}$£¬$\frac{1}{3}$R3D£®$\frac{¦Ð}{2}$£¬$\frac{1}{6}$R3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖª100¼þ²úÆ·ÖÐÓÐ10¼þ´ÎÆ·£¬´ÓÖÐÈÎÈ¡3¼þ£¬ÔòÈÎÒâÈ¡³öµÄ3¼þ²úÆ·ÖдÎÆ·ÊýµÄ¾ùֵΪ0.3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®º¯Êýy=x4+2x2-1µÄÖµÓò[-1£¬+¡Þ£©£»º¯Êýy=$\frac{1}{{x}^{2}+1}$µÄÖµÓò£¨0£¬1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÈôʵÊýa£¬bÔÚÇø¼ä[0£¬$\sqrt{2}$]ÉÏÈ¡Öµ£¬Ôòº¯Êýf£¨x£©=$\frac{2}{3}$ax3+bx2+axÔÚRÉÏÓÐÁ½¸öÏàÒ켫ֵµãµÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{\sqrt{2}}{2}$B£®$\frac{\sqrt{2}}{4}$C£®$\frac{\sqrt{2}}{8}$D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Ò»¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®20B£®24C£®16D£®$16+\frac{3}{2}\sqrt{10}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Éèx1ºÍx2ÊÇ·½³Ìx2+7x+1=0µÄÁ½¸ö¸ù£¬Ôò${x}_{1}^{2}$+x${\;}_{2}^{2}$=47£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚ¡÷ABCÖÐÂú×ãÌõ¼þacosB+bcosA=2ccosC£¬
£¨1£©Çó¡ÏC£»
£¨2£©Èôc=2£¬ÇóÈý½ÇÐÎABCÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸