【题目】已知直线过点,圆:.
(1)求截得圆弦长最长时的直线方程;
(2)若直线被圆N所截得的弦长为,求直线的方程.
【答案】(1) ;(2)或.
【解析】试题分析:(1)把圆N的方程化为标准方程,找出圆心的坐标,根据题意可知直线过圆心时截得的弦最长,故由及的坐标确定出直线的方程即可;(2)设直线与圆交于和两点的坐标,过圆心作垂直于,根据垂径定理得到为的中点,从而得到,接下来分两种情况考虑:第一,直线的斜率不存在时,可得直线的方程为,把代入圆的方程中,得到关于的一元二次方程,求出方程的解得到的值,经过检验得到时,弦的长为,符合题意;第二,当直线的斜率存在时,设出直线的斜率为,由的坐标和设出的斜率写出直线的方程,在直角三角形中,由的长及半径的长,利用勾股定理求出的长,然后利用点到直线的距离公式表示出圆心到直线的距离,令等于求出的的长列出关于的方程,求出方程的解得到的值,确定出直线的方程,综上,得到所有满足题意的直线的方程.
试题解析:(1)显然,当直线通过圆心N时,被截得的弦长最长,由,得 故所求直线的方程为,即.
(2)设直线与圆N交于两点(如图),作交直线于点D,显然D为AB的中点,且有
(Ⅰ)若直线的斜率不存在,则直线的方程为,将代入,得,解得,
因此符合题意
(Ⅱ)若直线的斜率存在,不妨设直线的方程为 即: ,由,得, ,因此,又因为点N到直线的距离
所以,即: ,此时直线的方程为,综上可知,直线的方程为或.
科目:高中数学 来源: 题型:
【题目】为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下表:
天数/天 | 151~180 | 181~210 | 211~240 | 241~270 | 271~300 | 301~330 | 331~360 | 361~390 |
灯管数/只 | 1 | 11 | 18 | 20 | 25 | 16 | 7 | 2 |
(1)试估计这种日光灯的平均使用寿命;
(2)若定期更换,可选择多长时间统一更换合适?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3﹣3x2 . (Ⅰ) 求f(x)的单调区间;
(Ⅱ) 若f(x)的定义域为[﹣1,m]时,值域为[﹣4,0],求m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB=BC,D为线段AC的中点.
(1)求证:PA⊥BD.
(2)求证:BD⊥平面PAC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,且,向量, .
(1)求函数的解析式,并求当时, 的单调递增区间;
(2)当时, 的最大值为5,求的值;
(3)当时,若不等式在上恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前55个圈中的●的个数是( )
A.10
B.9
C.8
D.11
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知随机变量X~N(μ,σ2),且其正态曲线在(-∞,80)上是增函数,在(80,+∞)上为减函数,且P(72≤X≤88)=0.682 6.
(1)求参数μ,σ的值;
(2)求P(64<X≤72).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com